Modeling the Parallelization of the Edmonds-Karp Algorithm and Application
- Amadou Chaibou
- Ousmane Moussa Tessa
- Oumarou Sié
Abstract
Many optimization problems can be reduced to the maximum flow problem in a network. However, the maximum flow problem is equivalent to the problem of the minimum cut, as shown by Fulkerson and Ford (Fulkerson & Ford, 1956). There are several algorithms of the graph’s cut, such as the Ford-Fulkerson algorithm (Ford & Fulkerson, 1962), the Edmonds-Karp algorithm (Edmonds & Karp, 1972) or the Goldberg-Tarjan algorithm (Goldberg & Tarjan, 1988). In this paper, we study the parallel computation of the Edmonds-Karp algorithm which is an optimized version of the Ford-Fulkerson algorithm. Indeed, this algorithm, when executed on large graphs, can be extremely slow, with a complexity of the order of O|V|.|E|2 (where |V| designates the number of vertices and |E| designates the number of the edges of the graph). So why we are studying its implementation on inexpensive parallel platforms such as OpenMp and GP-GPU. Our work also highlights the limits for parallel computing on this algorithm.
- Full Text: PDF
- DOI:10.5539/cis.v12n3p81
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org