Arabic Hand Written Character Recognition Based on Contour Matching and Neural Network

  •  Marwan Abo Zanona    
  •  Anmar Abuhamdah    
  •  Bassam Mohammed El-Zaghmouri    


Complexity of Arabic writing language makes its handwritten recognition very complex in terms of computer algorithms. The Arabic handwritten recognition has high importance in modern applications. The contour analysis of word image can extract special contour features that discriminate one character from another by the mean of vector features. This paper implements a set of pre-processing functions over a handwritten Arabic characters, with contour analysis, to enter the contour vector to neural network to recognize it. The selection of this set of pre-processing algorithms was completed after hundreds of tests and validation. The feed forward neural network architecture was trained using many patterns regardless of the Arabic font style building a rigid recognition model. Because of the shortcomings in Arabic written databases or datasets, the testing was done by non-standard data set. The presented algorithm structure got recognition ratio about 97%.

This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1913-8989
  • ISSN(Online): 1913-8997
  • Started: 2008
  • Frequency: quarterly

Journal Metrics

WJCI (2020): 0.439

Impact Factor 2020 (by WJCI): 0.247

Google Scholar Citations (March 2022): 6907

Google-based Impact Factor (2021): 0.68

h-index (December 2021): 37

i10-index (December 2021): 172

(Click Here to Learn More)