Arabic Hand Written Character Recognition Based on Contour Matching and Neural Network
- Marwan Abo Zanona
- Anmar Abuhamdah
- Bassam Mohammed El-Zaghmouri
Abstract
Complexity of Arabic writing language makes its handwritten recognition very complex in terms of computer algorithms. The Arabic handwritten recognition has high importance in modern applications. The contour analysis of word image can extract special contour features that discriminate one character from another by the mean of vector features. This paper implements a set of pre-processing functions over a handwritten Arabic characters, with contour analysis, to enter the contour vector to neural network to recognize it. The selection of this set of pre-processing algorithms was completed after hundreds of tests and validation. The feed forward neural network architecture was trained using many patterns regardless of the Arabic font style building a rigid recognition model. Because of the shortcomings in Arabic written databases or datasets, the testing was done by non-standard data set. The presented algorithm structure got recognition ratio about 97%.
- Full Text: PDF
- DOI:10.5539/cis.v12n2p126
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org