Topic Modelling in Bangla Language: An LDA Approach to Optimize Topics and News Classification
- Malek Mouhoub
- Mustakim Al Helal
Abstract
Topic modeling is a powerful technique for unsupervised analysis of large document collections. Topic models have a wide range of applications including tag recommendation, text categorization, keyword extraction and similarity search in the text mining, information retrieval and statistical language modeling. The research on topic modeling is gaining popularity day by day. There are various efficient topic modeling techniques available for the English language as it is one of the most spoken languages in the whole world but not for the other spoken languages. Bangla being the seventh most spoken native language in the world by population, it needs automation in different aspects. This paper deals with finding the core topics of Bangla news corpus and classifying news with similarity measures. The document models are built using LDA (Latent Dirichlet Allocation) with bigram.
- Full Text: PDF
- DOI:10.5539/cis.v11n4p77
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org