Influence of Aspect Ratios in Resolutions of High Purity Germanium Detectors in Nuclear Measurements


  •  Njinga Raymond Limen    
  •  Ita Okon Bassey Ewa    
  •  Sunday Adesonloye Jonah    
  •  Mark Omotola Afolayan Oladipo    
  •  Baba Alfa    

Abstract

Six HPGe detectors with various crystal diameters were investigated for data related to the aspect ratio, energy resolution, peak shape, Peak-to-Compton ratio and efficiencies as they affect nuclear analytical measurements. The germanium crystal diameters ranged from 4.47 cm to 5.88 cm with lengths varying from 3.34 cm to 7.63 cm. These detectors were classified into two main groups- the Low Aspect Ratio (LAR) and High Aspect Ratio (HAR) group. The efficiencies of the HAR and LAR were investigated as functions of energies within the range of 121.78 keV to 1332.5 keV, for various source detector geometries. The Peak-to-Compton ratio and peak shape measurements were investigated with respect to HAR and LAR. The result shows that Peak-to-Compton ratio and peak shape increased proportionately with all the six GEM-series detectors used. These translate to the six detectors having accurate counting statistics of photons/gamma rays. However, detectors D4, D5, and D6 classified as HAR were higher in resolutions.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1916-9639
  • ISSN(Online): 1916-9647
  • Started: 2009
  • Frequency: semiannual

Journal Metrics

Google-based Impact Factor (2017): 3.90
h-index (November 2017): 17
i10-index (November 2017): 33
h5-index (November 2017): 12
h5-median (November 2017): 19

Learn more

Contact