Influence of Aspect Ratios in Resolutions of High Purity Germanium Detectors in Nuclear Measurements
- Njinga Raymond Limen
- Ita Okon Bassey Ewa
- Sunday Adesonloye Jonah
- Mark Omotola Afolayan Oladipo
- Baba Alfa
Abstract
Six HPGe detectors with various crystal diameters were investigated for data related to the aspect ratio, energy resolution, peak shape, Peak-to-Compton ratio and efficiencies as they affect nuclear analytical measurements. The germanium crystal diameters ranged from 4.47 cm to 5.88 cm with lengths varying from 3.34 cm to 7.63 cm. These detectors were classified into two main groups- the Low Aspect Ratio (LAR) and High Aspect Ratio (HAR) group. The efficiencies of the HAR and LAR were investigated as functions of energies within the range of 121.78 keV to 1332.5 keV, for various source detector geometries. The Peak-to-Compton ratio and peak shape measurements were investigated with respect to HAR and LAR. The result shows that Peak-to-Compton ratio and peak shape increased proportionately with all the six GEM-series detectors used. These translate to the six detectors having accurate counting statistics of photons/gamma rays. However, detectors D4, D5, and D6 classified as HAR were higher in resolutions.
- Full Text: PDF
- DOI:10.5539/apr.v3n1p84
Journal Metrics
Google-based Impact Factor (2017): 3.90
h-index (November 2017): 17
i10-index (November 2017): 33
h5-index (November 2017): 12
h5-median (November 2017): 19
Index
- Bibliography and Index of Geology
- Civil Engineering Abstracts
- CNKI Scholar
- CrossRef
- EBSCOhost
- Excellence in Research for Australia (ERA)
- Google Scholar
- Infotrieve
- LOCKSS
- NewJour
- Open J-Gate
- PKP Open Archives Harvester
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
Contact
- William ChenEditorial Assistant
- apr@ccsenet.org