Kepler’s Ellipse Generated by the Trigonometrically Organized Gravitons
- Jiri Stavek
Abstract
Johannes Kepler made his great breakthrough when he discovered the elliptical path of the planet Mars around the Sun located in one focus of that ellipse (on the 11th October in 1605 in a letter to Fabricius). The first generation of researchers in the 17th century intensively discussed about the possible mechanism needed for the generation of that elliptical orbit and about the function of the empty focus of that ellipse. First generations of researchers proposed an interplay between attractive and repulsive forces that might guide the planet on its elliptical orbit. Isaac Newton made a giant mathematical progress in his Principia and introduced the concept of the attractive gravitational force between the Sun and planets. However, Newton did not propose a possible mechanism behind this attractive force. Albert Einstein in 1915 left the concept of attractive and repulsive forces and introduced his Theory based on the elastic spacetime. In his concept gravity itself became fictitious force and the attraction is explained via the elastic spacetime. In our proposed model we try to re-open the discussion of Old Masters on the existence of attractive and repulsive forces. The guiding principle for our trigonometrical model is the generation of the ellipse discovered by one of the last ancient Greek mathematicians – Anthemius of Tralles – who generated the ellipse by the so-called gardener’s method (one string and two pins fixed to the foci of that ellipse). Frans van Schooten in 1657 invented a series of original simple mechanisms for generating ellipses, hyperbolas, and parabolas. Schooten’s antiparallelogram might simulate the interplay of attractive and repulsive forces creating the elliptical path. We propose a model with trigonometrically organized Solar and planet gravitons. In this model the Solar and planet gravitons are reflected and refracted in predetermined directions so that their joint momentum transferred on the planet atoms guides the planet on an elliptical path around the Sun. At this stage we cannot directly measure the gravitons but we can use the analogy with behavior of photons. We propose to observe paths of photons emitted from one focus of the ellipse towards the QUARTER-silvered elliptical mirror. 1/4 of photons will be reflected towards to the second empty focus and the ¾ of photons might be reflected and refracted into the trigonometrically expected directions. (Until now we have experimental data only for the FULLY–silvered elliptical mirrors). The observed behavior of photons with the quarter-silvered elliptic mirror might support this concept or to exclude this model as a wrong model. The quantitative values of attractive and repulsive forces could be found from the well-known geometrical properties of the ellipse. The characteristic lengths of distances will be inserted into the great formula of Isaac Newton - the inverse square law. (In order to explain some orbit anomalies, we can use Paul Gerber’s formula derived for the Pierre Fermat principle). We have found that the Kant’s ellipse rotating on the Keppler’s ellipse might express the co-operation of attractive and repulsive forces to guide the planet on its elliptic path. Finally, we have derived a new formula inspired by Bradwardine - Newton - Tan - Milgrom that might contribute to the MOND gravitational model. We have found that the Kepler ellipse is the very elegant curve that might still keep some hidden secrets waiting for our future research.
- Full Text: PDF
- DOI:10.5539/apr.v10n4p26
Journal Metrics
Google-based Impact Factor (2017): 3.90
h-index (November 2017): 17
i10-index (November 2017): 33
h5-index (November 2017): 12
h5-median (November 2017): 19
Index
- Bibliography and Index of Geology
- Civil Engineering Abstracts
- CNKI Scholar
- CrossRef
- EBSCOhost
- Excellence in Research for Australia (ERA)
- Google Scholar
- Infotrieve
- LOCKSS
- NewJour
- Open J-Gate
- PKP Open Archives Harvester
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
Contact
- William ChenEditorial Assistant
- apr@ccsenet.org