New Solution of a Spherically Symmetric Static Problem of General Relativity
- Valery Vasiliev
Abstract
The paper is concerned with the spherically symmetric static problem of the General Relativity Theory. The classical solution of this problem found in 1916 by K. Schwarzschild for a particular metric form results in singular space metric coefficient and provides the basis of the objects referred to as Black Holes. A more general metric form applied in the paper allows us to obtain the solution which is not singular. The critical radius of the fluid sphere, following from this solution does not coincide with the traditional gravitational radius. For the spheres with radii that are less than the critical value, the solution of GRT problem does not exist.
- Full Text: PDF
- DOI:10.5539/apr.v9n5p29
Journal Metrics
Google-based Impact Factor (2017): 3.90
h-index (November 2017): 17
i10-index (November 2017): 33
h5-index (November 2017): 12
h5-median (November 2017): 19
Index
- Bibliography and Index of Geology
- Civil Engineering Abstracts
- CNKI Scholar
- CrossRef
- EBSCOhost
- Excellence in Research for Australia (ERA)
- Google Scholar
- Infotrieve
- LOCKSS
- NewJour
- Open J-Gate
- PKP Open Archives Harvester
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
Contact
- William ChenEditorial Assistant
- apr@ccsenet.org