Electromagnetic Radiation from a Tesla Transformer
- R M Craven
- I R Smith
- B M Novac
Abstract
In addition to the resistive and dielectric losses that inevitably occur near the secondary winding of a Tesla transformer, electromagnetic radiation into the far field also contributes to the overall power losses and thereby reduces both the effective quality factor (Q) and the power transfer efficiency of this winding. A short study of these effects for a laboratory scale transformer has shown that, in addition to its Q-factor being considerably reduced, the secondary winding is an extremely inefficient radiator of electromagnetic energy.
- Full Text: PDF
- DOI:10.5539/apr.v9n2p53
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
Google-based Impact Factor (2017): 3.90
h-index (November 2017): 17
i10-index (November 2017): 33
h5-index (November 2017): 12
h5-median (November 2017): 19
Index
- Bibliography and Index of Geology
- Civil Engineering Abstracts
- CNKI Scholar
- CrossRef
- EBSCOhost
- Excellence in Research for Australia (ERA)
- Google Scholar
- Infotrieve
- LOCKSS
- NewJour
- Open J-Gate
- PKP Open Archives Harvester
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
Contact
- William ChenEditorial Assistant
- apr@ccsenet.org