Rotating Space Elevators: A New Venue in Space Elevator Physics


  •  Leonardo Golubovic    
  •  Steven Knudsen    

Abstract

The physics of Space Elevators connecting the Earth with outer space has recently attracted increased attention, in part due to the discovery of ultra-strong materials such as carbon nanotubes and diamond nano-thread structures. In this article we review a new venue in space elevator physics: Rotating Space Elevators (RSE) [Golubovic, L. & Knudsen, S. (2009). Classical and statistical mechanics of celestial scale spinning strings: Rotating space elevators. Europhysics Letters 86(3), 34001.]. The RSE is a double rotating system of strings reaching outer space. Objects sliding along the RSE string (sliding climbers) do not require internal engines or propulsion to be transported far away from the Earth's surface. The RSE thus solves a major problem in the space elevator technology which is how to supply the energy to the climbers moving along the string. RSE strings exhibit interesting nonlinear dynamics and statistical physics phenomena. Satellites and spacecraft carried by sliding climbers can be released (launched) along RSEs. RSE strings can host space stations and research posts. Sliding climbers can be then used to transport useful loads and humans from the Earth to these outer space locations.



This work is licensed under a Creative Commons Attribution 4.0 License.
  • ISSN(Print): 1916-9639
  • ISSN(Online): 1916-9647
  • Started: 2009
  • Frequency: semiannual

Journal Metrics

Google-based Impact Factor (2017): 3.90
h-index (November 2017): 17
i10-index (November 2017): 33
h5-index (November 2017): 12
h5-median (November 2017): 19

Learn more

Contact