Formation of Elements and Compounds in Space in Early Universe
- Abdul L. Bhuiyan
Abstract
At the end of the period of contraction of the universe, all objects transform into gravity particles such as photons and electron- positron pairs which exist in virtual state in spacetime at an extremely high temperature. These particles move with extremely high speed comparable to the speed of light. As the early universe starts cooling, the speed of the particles starts to decrease when photons and electron- positron pairs move out of spacetime and appear as real particles. As the temperature continues to fall due to cooling, the electron- positron pairs start forming quarks (u and d) while simultaneously the energy of photons transform into dark matter. The u quarks and d quarks then continue to form nuclei of different elements including radio elements. Simultaneously, the lighter elements such as hydrogen, nitrogen, carbon, oxygen, phosphorus, etc. form the precursors to DNAs and RNAs of living organisms.
- Full Text: PDF
- DOI:10.5539/apr.v8n6p86
Journal Metrics
Google-based Impact Factor (2017): 3.90
h-index (November 2017): 17
i10-index (November 2017): 33
h5-index (November 2017): 12
h5-median (November 2017): 19
Index
- Bibliography and Index of Geology
- Civil Engineering Abstracts
- CNKI Scholar
- CrossRef
- EBSCOhost
- Excellence in Research for Australia (ERA)
- Google Scholar
- Infotrieve
- LOCKSS
- NewJour
- Open J-Gate
- PKP Open Archives Harvester
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
Contact
- William ChenEditorial Assistant
- apr@ccsenet.org