Numerical Investigation of Mid-Infrared Supercontinuum Generation in GeAsSe Based Chalcogenide Photonic Crystal Fiber Using Low Peak Power
- M. R. Karim
- B. M. A. Rahman
Abstract
We numerically investigate the use of photonic crystal fiber (PCF) through dispersion engineering of its cladding containing air-holes for supercontinuum (SC) generation in the mid-infrared region using low peak power. A 3.6-cm-long PCF made using Ge11.5As24Se64.5 chalcogenide (ChG) glass with a hexagonal array of air-holes was optimized for obtaining zero-dispersion wavelength through dispersion tailoring around the pump wavelength of 4 μm. We have performed numerical simulations for such dispersion tailored ChG PCF with the peak power range between 0.25 kW and 2 kW. It was found through rigorous numerical simulations that an ultrabroadband mid-infrared SC spectra covering the wavelength range 2-8 μm which is equivalent to 2 octaves could be generated using pump pulses of 320 fs duration at a wavelength of 4 μm with a relatively low peak power of 2 kW by using our proposed ChG PCF design.- Full Text: PDF
- DOI:10.5539/apr.v8n4p29
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
Google-based Impact Factor (2017): 3.90
h-index (November 2017): 17
i10-index (November 2017): 33
h5-index (November 2017): 12
h5-median (November 2017): 19
Index
- Bibliography and Index of Geology
- Civil Engineering Abstracts
- CNKI Scholar
- CrossRef
- EBSCOhost
- Excellence in Research for Australia (ERA)
- Google Scholar
- Infotrieve
- LOCKSS
- NewJour
- Open J-Gate
- PKP Open Archives Harvester
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
Contact
- William ChenEditorial Assistant
- apr@ccsenet.org