Quantum Mechanical Formulation of the Bloch NMR Flow Equations for the Analysis of Radio Wave Attenuation in Satellite Communication
- Rasheedat Bola Abdulrahim
- Michael Dada
- Bamidele Awojoyogbe
Abstract
Barrier potential in quantum mechanics is not just a theoretical phenomenon but is often encountered in various physical realities. It involves reflection and transmission of some wave functions around a region with a given potential function. It is possible for particles of a wave function to slow down or speed up if they manage to go through a potential barrier or a region, in which case, the observed change in their velocities is as good as saying that the particle’s waves has gone through some processes of refraction. Therefore, reflection, transmission, absorption and refraction all involve phenomena which arise from the wave-like behavior of the motion of microscopic particles. Current analysis of the radio wave attenuation in satellite communications shows that there are no quantum mechanical models of the Bloch NMR flow equations for the analysis of radio wave attenuation in satellite communication system, especially in the area of the inter-dependence of the radio wave frequency and the refractive index of the atmosphere on the radio signal. This therefore necessitates the need to model and simulate the Bloch NMR flow equation quantum mechanically as presented in this study and use it for possible radio wave attenuation in satellite communication system for easy understanding by the earth-space link operators.- Full Text: PDF
- DOI:10.5539/apr.v5n3p86
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
Google-based Impact Factor (2017): 3.90
h-index (November 2017): 17
i10-index (November 2017): 33
h5-index (November 2017): 12
h5-median (November 2017): 19
Index
- Bibliography and Index of Geology
- Civil Engineering Abstracts
- CNKI Scholar
- CrossRef
- EBSCOhost
- Excellence in Research for Australia (ERA)
- Google Scholar
- Infotrieve
- LOCKSS
- NewJour
- Open J-Gate
- PKP Open Archives Harvester
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
Contact
- William ChenEditorial Assistant
- apr@ccsenet.org