Topological Optimization of Dynamic Characteristics for Orthotropic Material Structure Using Shape Derivative and Augmented Lagrangian Method
- Sen Liang
- Lei Liang
Abstract
This paper presents a new level set method for topology optimization of dynamic structure of orthotropic materials using the shape derivative analysis and augmented Lagrangian method. The design boundary of the structure is embedded implicitly into the zero level set of a higher dimensional scalar function, which is mathematically represented as a Hamilton-Jacobi partial differential equation (PDE). The design sensitivity of the dynamic structure is obtained by the combination of the level set representation and the shape derivative method. In doing so, the evolution of the design boundary is advanced iteratively in terms of the solutions of the Hamilton-Jacobi PDE using explicit time marching schemes. Some typical numerical examples are applied to demonstrate the validity of the present method.
- Full Text: PDF
- DOI:10.5539/mas.v5n1p186
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org