Grid Resource Prediction based on Support Vector Regression and Simulated Annealing Algorithms
- Ying Zheng
Abstract
Accurate grid resources prediction is crucial for a grid scheduler. In this study, support vector regression (SVR), which is a novel and effective regression algorithm, is applied to grid resources prediction. In order to build an effective SVR model, SVR’s parameters must be selected carefully. Therefore, we develop a simulated annealing algorithm-based SVR (SA-SVR) model that can automatically determine the optimal parameters of SVR with higher predictive accuracy and generalization ability simultaneously. The performance of the hybrid model (SA-SVR), the back-propagation neural network (BPNN) and traditional SVR model whose parameters are obtained by trial-and-error procedure (T-SVR) have been compared with benchmark data set. Experimental results demonstrate that SA-SVR model works better than the other two models.
- Full Text: PDF
- DOI:10.5539/mas.v4n11p97
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org