Sentiment Analysis Algorithms through Azure Machine Learning: Analysis and Comparison
- Osama Harfoushi
- Dana Hasan
- Ruba Obiedat
Abstract
The Sentimental Analysis (SA) is a widely known and used technique in the natural language processing realm. It is often used in determining the sentiment of a text. It can be used to perform social media analytics. This study sought to compare two algorithms; Logistic Regression, and Support Vector Machine (SVM) using Microsoft Azure Machine Learning. This was demonstrated by performing a series of experiments on three Twitter datasets (TD). Accordingly, data was sourced from Twitter a microblogging platform. Data were obtained in the form of individuals’ opinions, image, views, and twits from Twitter. Azure cloud-based sentiment analytics models were created based on the two algorithms. This work was extended with more in-depth analysis from another Master research conducted lately. Results confirmed that Microsoft Azure ML platform can be used to build effective SA models that can be used to perform data analytics.
- Full Text: PDF
- DOI:10.5539/mas.v12n7p49
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org