Electronic Structure and Dipole Moment Calculations of the Electronic States of the Molecule ZnS


  •  Abeer Youssef    
  •  Ghassan Younes    
  •  Mahmoud Korek    

Abstract

In this study, the low lying electronic states and spectroscopy of diatomic molecule ZnS in addition to its dipole moments have been investigated by performing highly correlated ab initio calculations, the Complete Active Space Self Consistent Field (CASSCF) method with Multi Reference Configuration Interaction (MRCI+Q) for an accurate picture for these states. The proposed study includes information about the potential energy curves of the lowest 12 singlet and 9 triplet electronic states of the molecule ZnS, in the representation 2s+1Λ(+/-). Nine of these states have been studied here for the first time. The harmonic frequency we, the internuclear distance re, the electronic energy with respect to the ground state Te, the rotational constant Be, and the permanent dipole moment μ have been calculated, compared and compiled with the available existing data to illustrate the electronic characteristics. The comparison of these values reveals a very good agreement.



This work is licensed under a Creative Commons Attribution 4.0 License.