Collaborative Strategy for Grey Wolf Optimization Algorithm
- Esra F. Alzaghoul
- Sandi N. Fakhouri
Abstract
Grey wolf Optimizer (GWO) is one of the well known meta-heuristic algorithm for determining the minimum value among a set of values. In this paper, we proposed a novel optimization algorithm called collaborative strategy for grey wolf optimizer (CSGWO). This algorithm enhances the behaviour of GWO that enhances the search feature to search for more points in the search space, whereas more groups will search for the global minimal points. The algorithm has been tested on 23 well-known benchmark functions and the results are verified by comparing them with state of the art algorithms: Polar particle swarm optimizer, sine cosine Algorithm (SCA), multi-verse optimizer (MVO), supernova optimizer as well as particle swarm optimizer (PSO). The results show that the proposed algorithm enhanced GWO behaviour for reaching the best solution and showed competitive results that outperformed the compared meta-heuristics over the tested benchmarked functions.
- Full Text: PDF
- DOI:10.5539/mas.v12n7p73
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org