Application of Central Force Optimization Method to Design Transient Protection Devices for Water Transmission Pipelines
- S.Mahmood Jazayeri Moghaddas
- Hossein M.V. Samani
Abstract
One of the major challenges in designing under pressure water transmission pipeline is the system protection against water-hammer pressures due to a pump trip. The best strategy is to use air-chamber; which imposes considerable costs. To mitigate the air-chamber volume, the use of air-inletvalvesis also suggested. Determination of air-chamber volume as well as the type and proper locations of air-inlet valves, aiming at the cost reduction, introduces an optimization problem. To solve this problem, this study exploitsthe central force optimization (CFO) method. Herein, a case study pipeline is optimized using the proposed model based on the CFO and is compared with results of a genetic algorithm (GA) based model. Both methods yielded almost the same results and led to about 30% saving in the system protection cost. However, a comparison between the methods showed that the CFO dramaticallyoutperforms GA in both terms of computational efficiency and reliability of the results.- Full Text: PDF
- DOI:10.5539/mas.v11n3p76
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org