IKVAV-Containing Cell Membrane Penetrating Peptide Treatment Induces Changes in Cellular Morphology after Spinal Cord Injury
- Soheila Kazemi
- Wendy Baltzer
- Hadi Mansouri
- Karl Schilke
- John Mata
Abstract
A cell membrane spanning peptide was used to increase the concentration of the IKVAV motif within damaged mouse spinal cord tissue. This peptide was injected directly to the lesion 24 hours after spinal cord compression injury. Because the membrane-spanning portion of the peptide adheres to tissue upon injection with a long half-life we hypothesized that the bioactive IKVAV sequence will provide a sustained regenerative signal at the sight of injury. Five different groups of mice were used and cellular morphology observations were undertaken using light and electron microscopy. Three surgical control groups: IKVAV, peptide and mannitol; one surgical treatment group: IKVAV-peptide; and one non-surgical control group: normal, were used in this experiment. In this study, treatment with IKVAV-peptide after SCI resulted in an increased number of protoplasmic astrocytes, large active motor neurons, and regeneration of muscle bundles followed by behavioral improvement. In this paper, we describe the cellular differences between all groups.
- Full Text: PDF
- DOI:10.5539/mas.v10n11p149
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org