Determining the Best Insertion Site of Fluid Viscous Dampers to Optimize and Reduce Incurredcosts in Adjacent Buildings
- Solmazyaghobzadeh Solmazyaghobzadeh
Abstract
In the past decade, researchers developed the idea of connecting buildings with intelligent activated, semi-active and inactivated damper systemsreduce adjacent buildings response to wind and earthquake. One of the most important damper devices in non-active control is fluid viscous damper.Fluid dampers due to viscous fluidsshow high resistance. High resistance of viscous fluidsagainst the flow is the basicfunctionof fluid viscous dampers. Deformation speed a fluid viscous damper is proportional to the acted forces. Therefore the aim of this paper is to determine the insertion site of fluid viscous dampersto optimize and reduce the consuming costs in adjacent buildings. For this purpose, four different models of connected adjacent buildings with common and different shear stiffness in the software SAP 2000 has been modeled. This study shows that it is not necessarytwo adjacent buildings connected by a damper on all floors, but the less damper in appropriate selected locations can help reduce the earthquake response. And by placing the fluid viscous dampers in selected certainfloors provides more useful structural system for reducing the effects of earthquakes.
- Full Text: PDF
- DOI:10.5539/mas.v10n9p130
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org