A Bayesian via Laplace Approximation on Log-gamma Model with Censored Data
- Madaki Yusuf
- Mohd Abu Bakar
- Qasim Husain
- Noor Ibrahim
- Jayanthi Arasan
Abstract
Log-gamma distribution is the extension of gamma distribution which is more flexible, versatile and provides a great fit to some skewed and censored data. Problem/Objective: In this paper we introduce a solution to closed forms of its survival function of the model which shows the suitability and flexibility towards modelling real life data. Methods/Analysis: Alternatively, Bayesian estimation by MCMC simulation using the Random-walk Metropolis algorithm was applied, using AIC and BIC comparison makes it the smallest and great choice for fitting the survival models and simulations by Markov Chain Monte Carlo Methods. Findings/Conclusion: It shows that this procedure and methods are better option in modelling Bayesian regression and survival/reliability analysis integrations in applied statistics, which based on the comparison criterion log-gamma model have the least values. However, the results of the censored data have been clarified with the simulation results.- Full Text: PDF
- DOI:10.5539/mas.v11n1p14
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org