Effects of Pore Geometry and Pore Structure on Dry P-Wave Velocity
- Suryo Prakoso
- Pudji Permadi
- Sonny Winardhie
Abstract
The behavior of compressional or P-wave velocity passing through natural porous rocks with heterogeneous and irregular shapes of the pore system is not well understood. The present study implemented a modified Kozeny equation to characterize pore attributes, pore geometry and structure, in an attempt to investigate factors influencing the velocity. This equation is in the form of a power law one from which a concept of similarity in pore attributes can be derived. Employing a large number of data of porous sandstones, the results show that a similarity in the pore attribute plays an important role in relating the velocity with the details of geometry and structure of the pores system. For a given group of rocks having similar pore structure, an increase in the pore geometry variable, (k/f)0.5, tends to increase the velocity provided that the increase in the geometry is due to an increase in permeability followed by a decrease in porosity. Overall, the prediction of P-wave velocity is best obtained when the rocks are grouped according to pore structure similarity.- Full Text: PDF
- DOI:10.5539/mas.v10n8p117
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org