Effects of Pore Geometry and Pore Structure on Dry P-Wave Velocity

  •  Suryo Prakoso    
  •  Pudji Permadi    
  •  Sonny Winardhie    


The behavior of compressional or P-wave velocity passing through natural porous rocks with heterogeneous and irregular shapes of the pore system is not well understood. The present study implemented a modified Kozeny equation to characterize pore attributes, pore geometry and structure, in an attempt to investigate factors influencing the velocity. This equation is in the form of a power law one from which a concept of similarity in pore attributes can be derived. Employing a large number of data of porous sandstones, the results show that a similarity in the pore attribute plays an important role in relating the velocity with the details of geometry and structure of the pores system. For a given group of rocks having similar pore structure, an increase in the pore geometry variable, (k/f)0.5, tends to increase the velocity provided that the increase in the geometry is due to an increase in permeability followed by a decrease in porosity. Overall, the prediction of P-wave velocity is best obtained when the rocks are grouped according to pore structure similarity.

This work is licensed under a Creative Commons Attribution 4.0 License.