Effect of Gravity on Radiative Heat Feedback on Small-Scale Pool Fires Using the Radiative Absorption Model
- Koei Yoshida
- Ryo Takahashi
- Hiroyuki Torikai
- Akihiko Ito
Abstract
The flame characteristics of pool fires such as their height vary depending on gravity. To improve our understanding of the effects of gravity on flame characteristics, we experimentally investigated small-scale pool fires under conditions of normal to partial gravity; using the drop tower at Hirosaki University in Japan to obtain arbitrary partial gravity condition, which varied from 1 G to 0.55 G. We performed the measurement of the temperature distribution with a thermocouple and that of the flame shape with a digital camera. Based on these data, we estimated radiative heat feedback using our new model “The radiative absorption model”. It becomes easy to estimate radiative heat transfer using this model if flames have complicated shapes and time variability. From these analyses, we made clear that the radiative heat feedback of small-scale pool fires decreases under partial gravity environment.- Full Text: PDF
- DOI:10.5539/mas.v10n10p150
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org