Improvement of Regression Forecasting Models
- Vasiliy Zubakin
- Oleg Kosorukov
- Nikita Moiseev
Abstract
In this paper authors propose the technique, which decreases average forecast error of regression based models. The main idea of the method is to use the weighted sum of several regression equations, which satisfy Ordinary Least Squares prerequisites and have independent residuals, instead of only one. It is shown that if all method requirements are met, it is possible to decrease Mean Squared Error almost by half, using just three equations. This technique allows deriving equations which contain more predictors than the number of observations. Additionally, this method proves to be more consistent in time than any of regressions, used in it, separately. It is also illustrated, that the proposed method outperforms the regression equation, computed with the same independent variables, and, thus, it gives more accurate estimators of regression coefficients. Empirical results are provided as well.
- Full Text: PDF
- DOI:10.5539/mas.v9n6p344
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org