Decomposition Analysis and Machine Learning in a Workflow-Forecast Approach to the Task Scheduling Problem for High-Loaded Distributed Systems
- Andrey Gritsenko
- Nikita Demurchev
- Vladimir Kopytov
- Andrey Shulgin
Abstract
The aim of this paper is to provide a description of machine learning based scheduling approach for high-loaded distributed systems that have patterns of tasks/queries that occur recurrently in workflow. The core of this approach is to predict the future workflow of the system depending on previous tasks/queries using supervised learning. First of all, the workflow is analyzed using hierarchical clustering to reveal sets of tasks/queries. Revealed sets of tasks/queries then undergo restructuring to represent patterns of recurrent tasks/queries. Later these patterns become the object of the forecasting process performed using neural network. Information on predicted tasks/queries is used by the resource management system (RMS) to perform efficient schedule. To estimate the performance of the described method it was at first realized as a module of the simulation tool Alea that models the work of high-performance distributed systems and then compared with other state-of-the-art scheduling algorithms. The simulation was produced for two datasets: in one of the experiments the proposed method showed best results, and in the other it was inferior to just a single method, though it was much better than commonly used standard scheduling algorithms.
- Full Text: PDF
- DOI:10.5539/mas.v9n5p38
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org