The Stability Analyses of the Mathematical Models of Hepatitis C Virus Infection
- Maureen Chong
- Masitah Shahrill
- Laurie Crossley
- Anotida Madzvamuse
Abstract
There are two mathematical models of Hepatitis C virus (HCV) being discussed; the original model of HCV viral dynamics (Neumann et al., 1998) and its extended model (Dahari et al., 2007). The key aspects of the mathematical models have provided resources for analysing the stability of the uninfected and the infected steady states, in evaluating the antiviral effectiveness of therapy and for estimating the ranges of values of the parameters for clinical treatment. The original model is considered to be a deterministic model because of the predictive nature of the antiviral therapy within the constant target cells. Numerical simulations are carried out in the extended model, to explain the stability of the steady states in the absence or existence of migration in hepatocytes and, drug efficacy in treating HCV infection.
- Full Text: PDF
- DOI:10.5539/mas.v9n3p250
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org