Optimal Guaranteed Cost Control of an Uncertainty System and its Application
- Min Xiao
- Zhongke Shi
Abstract
The non-fragile guaranteed controller design problem for an interval system and a given cost function is discussed. A sufficient condition is established such that the closed-loop system stability and cost function is guaranteed to be no more than a certain upper bound with all admissible uncertainties as well as a controller gain perturbation uncertainty. A modified interval system described by matrix factorization will lead to less conservative conclusions. An effective linear matrix inequality (LMI) approach is developed to solve the addressed problem. Furthermore, a convex optimization problem is formulated to design the optimal non-fragile guaranteed cost controller which minimizes the upper bound of the closed-loop system cost. The effectiveness of this approach has been verified on a missile launched underwater attitude control system design. Simulation results on a real example are presented to validate the proposed design approach.
- Full Text: PDF
- DOI:10.5539/mas.v3n7p128
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org