A Novel Center Point Initialization Technique for K-means Clustering Algorithm
- Dauda Usman
- Ismail Mohamad
Abstract
Clustering is a major data analysis tool utilized in numerous domains. The basic K-means method has been widely discussed and applied in many applications. But unfortunately failed to offer good clustering result due to the initial center points are chosen randomly. In this article, we present a new method of centre points initialization and we prove that the distance of the new method follows a Chi-square distribution. The new method overcomes the drawbacks of the basic K-means. Experimental analysis shows that the new method performs well on infectious diseases dataset when compare with the basic K-means clustering method and a histogram measures the quality of the new method.
- Full Text: PDF
- DOI:10.5539/mas.v7n9p10
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org