Vibration Suppression Techniques in Feedback Control Loop of a Flexible Robot Manipulator

  •  Mohd Ahmad    
  •  Zaharuddin Mohamed    


This paper presents the use of angular position control approaches for a flexible robot manipulator with disturbances effect in the dynamic system. Delayed Feedback Signal (DFS), Linear Quadratic Regulator (LQR) and Proportional-Derivative (PD) controller are the techniques used in this investigation to actively control the vibrations of flexible structure. A constrained planar single-link flexible manipulator is considered and the dynamic model of the system is derived using the assumed mode method. A complete analysis of simulation results for each technique is presented in time domain and frequency domain respectively. Performances of the controller are examined in terms of vibration suppression and disturbances cancellation. Finally, a comparative assessment of the impact of each controller on the system performance is presented and discussed.

This work is licensed under a Creative Commons Attribution 4.0 License.