Research on Dynamic Facial Expressions Recognition
- Xiaoning Peng
- Beiji Zou
- Lijun Tang
- Ping Luo
Abstract
Human-computer intelligent interaction (HCII) is usually based on facial expression recognition. A dynamic facial expression recognition method based on video sequence is proposed in this paper, which uses Gaussian of Mixture Hidden Markov Model. Firstly, we get some special facial expression regions, in which the motion features are extracted and described as phase form and then constituted to eigen-sequences. Secondly we use Gaussian of Mixture Hidden Markov Model to learn and test these eigen-sequences, and recognize six universal facial expressions: angry, disgust, fear, happy, sad and surprise. And we developed an experimental system based on our algorithm. The experimental results show that the computing time and the error of vector quantization is reduced, while the classification efficiency is improved.
- Full Text: PDF
- DOI:10.5539/mas.v3n5p31
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org