Immobilization of a-Amylase from Locale Bacteria Isolate Bacillus subtilis ITBCCB148 with Carboxymethyl Cellulose (CM-Cellulose)
- Yandri Yandri
- Devi Susanti
- Tati Suhartati
- Sutopo Hadi
Abstract
This paper describes the stability increase of a-amylase obtained from Bacillus subtilis ITBCCB 148 by immobilization process using carboxymethyl cellulose (CM-Cellulose) as the immobile matrix. To achieve this aim the enzyme was purified by the following steps: fractionation with ammonium sulphate, dialysis, ion exchange column chromatography with CM-cellulose and molecule filtration column chromatography with Sephadex G-100. The purified enzyme was then immobilized with CM-Cellulose. The result showed that the immobilization with CM-cellulose on a-amylase obtained from B. subtilis has successfully increased the thermal stability of the native enzyme. The thermal stabilities of the modified enzyme were increased 3.67 times compared to the native enzyme. The decrease of ki value, the increase of half-life and ?Gi values showed that the modified enzymes were more stable than the native enzyme.
- Full Text: PDF
- DOI:10.5539/mas.v6n3p81
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org