Design of 4 Elements Rectangular Microstrip Patch Antenna with High Gain for 2.4 GHz applications
- Yahya S. H. khraisat
Abstract
In the recent years the development in communication systems requires the development of low cost, minimal weight and low profile antennas that are capable of maintaining high performance over a wide spectrum of frequencies. This technological trend has focused much effort into the design of a microstrip patch antenna. The objective of this paper is to design, and fabricate an inset fed rectangular microstrip patch antenna. Therefore, a novel particle swarm optimization method based on IE3D was used to design an inset feed linearly polarized rectangular microstrip patch antenna with four element array. The length of the antenna is nearly half wavelength in the dielectric; it’s a very critical parameter, which governs the resonant frequency of the antenna. In view of design, selection of the patch width and length are the major parameters along with the feed line depth. Desired patch antenna design was simulated by IE3D simulator program. Initially we set our antenna as a single patch and after evaluating the outcomes of antenna features, operation frequency, radiation patterns, reflected loss, efficiency and antenna gain, and then we transformed it to a 2x1 linear array. Then we analyzed the 4x1 linear antenna array to increase directivity, gain, efficiency, and have better radiation patterns.
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org