Control System Design of Magneto-rheoloical Damper under High-Impact Load
- Bucai Liu
- Jinjie Chen
Abstract
In recent years, the performance requirements of the mechanical and electrical products are increasingly, how to improve those products’ impact resistant ability while in the environment of high impact is become very important. Because of the traditional damper device could not do the real-time adjust about the damping force during the high impact process, in this paper, a magneto-rheological damper is applied to cushion the high-impact load. And the control current, passing into the electromagnetic coil of damper, is changed by designing the delay and fuzzy PID control algorithm in real time, which achieve an effective buffering control of high-impact load. The whole control method is based on TMS320F2812 to achieve. Experimental results show that it can significantly improve the dynamic performance of the damper control system by real-time precise control of the delay and fuzzy PID control algorithm, increase the stability of the damping process.
- Full Text: PDF
- DOI:10.5539/mas.v5n5p253
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org