Markov Chain Monte Carlo-Based Bayesian Analysis of Binary Response Regression, with Illustration in Dose-Response Assessment
- Crispin M. Mutshinda
Abstract
This paper deals with the Bayesian analysis of binary response regression using Markov chain Monte Carlo (MCMC) methods, more specifically the Metropolis sampler, for posterior simulation. The methodology is illustrated with real-world data from a bioassay experiment. Inference about quantities of typical interest in the dose-response setting such as the lethal dose is discussed as well. MCMC are routinely implemented through popular Bayesian software such as Win-/Open-BUGS. However, these remain black boxes which provide no insight in the estimation procedure. This paper exemplifies that developing and implementing an MCMC sampler may, in many practical situations, be relatively straightforward. The R code for the Metropolis sampler is also provided in an appendix to the paper.- Full Text: PDF
- DOI:10.5539/mas.v3n4p19
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org