LOD-BOR-FDTD Algorithm for Analyzing Debye Dispersive Media by Bilinear Z Transforms
- Pin Zhang
Abstract
In order to reduce memory usage and improve efficiency, the unconditionally stable locally 1-D (LOD)-FDTD method for bodies of revolution (BOR) is extended to Debye dispersive media based on the bilinear Z transform (BZT) theory. The LOD-BOR-FDTD method is proposed. To validate the Higher efficiency and Lower memory usage of the proposed algorithm, two numerical examples are given. Compared with the 3-D FDTD and ADI-BOR-FDTD result, they show good agreement and at least 80% of computational time to the ADI counterparts.
- Full Text: PDF
- DOI:10.5539/mas.v5n4p118
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org