Artificial Bee Colony based Data Mining Algorithms for Classification Tasks
- Mohd Afizi Mohd Shukran
- Yuk Chung
- Wei-Chang Yeh
- Noorhaniza Wahid
- Ahmad Mujahid Ahmad Zaidi
Abstract
Artificial Bee Colony (ABC) algorithm is considered new and widely used in searching for optimum solutions. This is due to its uniqueness in problem-solving method where the solution for a problem emerges from intelligent behaviour of honeybee swarms. This paper proposes the use of the ABC algorithm as a new tool for Data Mining particularly in classification tasks. Moreover, the proposed ABC for Data Mining were implemented and tested against six traditional classification algorithms classifiers. From the obtained results, ABC proved to be a suitable candidate for classification tasks. This can be proved in the experimental result where the performance of the proposed ABC algorithm has been tested by doing the experiments using UCI datasets. The results obtained in these experiments indicate that ABC algorithm are competitive, not only with other evolutionary techniques, but also to industry standard algorithms such as PART, SOM, Naive Bayes, Classification Tree and Nearest Neighbour (kNN), and can be successfully applied to more demanding problem domains.- Full Text: PDF
- DOI:10.5539/mas.v5n4p217
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org