Parallel Whale Optimization Algorithm for Maximum Flow Problem
- Raja Masadeh
- Abdullah Alzaqebah
- Bushra Smadi
- Esra Masadeh
Abstract
Maximum Flow Problem (MFP) is considered as one of several famous problems in directed graphs. Many researchers studied MFP and its applications to solve problems using different techniques. One of the most popular algorithms that are employed to solve MFP is Ford-Fulkerson algorithm. However, this algorithm has long run time when it comes to application with large data size. For this reason, this study presents a parallel whale optimization (PWO) algorithm to get maximum flow in a weighted directed graph. The PWO algorithm is implemented and tested on datasets with different sizes. The PWO algorithm achieved up to 3.79 speedup on a machine with 4 processors.
- Full Text: PDF
- DOI:10.5539/mas.v14n3p30
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org