K-Means Clustering in WSN with Koheneon SOM and Conscience Function
- Asia K. Bataineh
- Mohammad Habib Samkari
- Abdualla Abdualla
- Saad Al-Azzam
Abstract
Wireless Sensor Networks (WSNs) are broadly utilized in the recent years to monitor dynamic environments which vary in a rapid way over time. The most used technique is the clustering one, such as Kohenon Self Organizing Map (KSOM) and K means. This paper introduces a hybrid clustering technique that represents the use of K means clustering algorithm with the KSOM with conscience function of Neural Networks and applies it on a certain WSN in order to measure and evaluate its performance in terms of both energy and lifetime criteria. The application of this algorithm in a WSN is performed using the MATLAB software program. Results demonstrate that the application of K-means clustering algorithm with KSOM algorithm enhanced the performance of the WSN which depends on using KSOM algorithm only in which it offers an enhancement of 11.11% and 3.33% in terms of network average lifetime and consumed energy, respectively. The comparison among the current work and a previous one demonstrated the effectiveness of the proposed approach in this work in terms of reducing the energy consumption.
- Full Text: PDF
- DOI:10.5539/mas.v13n8p63
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org