Arabic Text Classification: A Review
- Adel Hamdan Mohammad
Abstract
Text classification is an important topic. The number of electronic documents available on line is massive. Text classification aims to classify documents into a set of predefined categories. Number of researches conducted on English dataset is great in comparison with number of researches done using Arabic dataset. This research could be considered as reference for most researchers who deal with Arabic dataset. This research used the most well-known algorithms used in text classification with Arabic dataset. Besides that, dataset used in this research is large enough in comparison with most dataset for Arabic language used in other researches. In addition, this research used different selections and weighting methods for documents. I expect that all researchers who would write researches using Arabic dataset will find this work helpful. Algorithms used in this research are naïve Bayesian, support vector machines, artificial neural networks, k- nearest neighbors, C4.5 decision tree and rocchio classifier.
- Full Text: PDF
- DOI:10.5539/mas.v13n5p88
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org