Comparing the Performance of Different Data Mining Techniques in Evaluating Loan Applications
- Arash Riasi
- Deshen Wang
Abstract
This study compares the performance of various data mining classifiers in order to find out which classifiers should be used for predicting whether a loan application will be approved or rejected. The study also tries to find the data mining classifiers which have the best performance in predicting whether an approved loan applicant will eventually default on his/her loan or not. The study was performed using a sample of 971 loan applicants. The results indicated that the best data mining classifier for predicting whether a loan applicant will be approved or rejected is LAD Tree, followed by Rotation Forest, Logit Boost, Random Forest, and AD Tree. It was also found that the best classifier for predicting whether an approved applicant will default on his/her loan is Bagging, followed by Simple Cart, J 48, J 48 graft, END, Class Balance ND, Data Near Balance ND, ND, and Ordinal Class Classifier.
- Full Text: PDF
- DOI:10.5539/ibr.v9n7p164
Journal Metrics
h-index (January 2024): 102
i10-index (January 2024): 947
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- ACNP
- ANVUR (Italian National Agency for the Evaluation of Universities and Research Institutes)
- CNKI Scholar
- COPAC
- CrossRef
- EBSCOhost
- EconBiz
- ECONIS
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- IBZ Online
- IDEAS
- Infotrieve
- Kobson
- LOCKSS
- Mendeley
- MIAR
- Norwegian Centre for Research Data (NSD)
- PKP Open Archives Harvester
- Publons
- Qualis/CAPES
- RePEc
- ResearchGate
- ROAD
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- ZBW-German National Library of Economics
- Zeitschriften Daten Bank (ZDB)
Contact
- Kevin DuranEditorial Assistant
- ibr@ccsenet.org