Customer Churn in Mobile Markets: A Comparison of Techniques
- Mohammed Hassouna
- Ali Tarhini
- Tariq Elyas
- Mohammad Saeed Abou Trab
Abstract
The high increase in the number of companies competing in mature markets makes customer retention an important factor for any company to survive. Thus, many methodologies (e.g., data mining and statistics) have been proposed to analyse and study customer retention. The validity of such methods is not yet proved though. This paper tries to fill this gap by empirically comparing two techniques: Customer churn - decision tree and logistic regression models. The paper proves the superiority of decision tree technique and stresses the needs for more advanced methods to churn modelling.
- Full Text: PDF
- DOI:10.5539/ibr.v8n6p224
Journal Metrics
h-index (January 2024): 102
i10-index (January 2024): 947
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- ACNP
- ANVUR (Italian National Agency for the Evaluation of Universities and Research Institutes)
- CNKI Scholar
- COPAC
- CrossRef
- EBSCOhost
- EconBiz
- ECONIS
- EconPapers
- Elektronische Zeitschriftenbibliothek (EZB)
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- IBZ Online
- IDEAS
- Infotrieve
- Kobson
- LOCKSS
- Mendeley
- MIAR
- Norwegian Centre for Research Data (NSD)
- PKP Open Archives Harvester
- Publons
- Qualis/CAPES
- RePEc
- ResearchGate
- ROAD
- Scilit
- SHERPA/RoMEO
- SocioRePEc
- Technische Informationsbibliothek (TIB)
- The Keepers Registry
- UCR Library
- Universe Digital Library
- ZBW-German National Library of Economics
- Zeitschriften Daten Bank (ZDB)
Contact
- Kevin DuranEditorial Assistant
- ibr@ccsenet.org