Prediction of Gas Holdup in a Three-Phase Internal Loop Airlift Fluidized Bed Reactor Using Newtonian and non-Newtonian Liquids

Sivakumar Venkatachalam, Akilamudhan Palaniappan, Kannan Kandasamy


The effect of superficial gas and liquid velocities, particle diameter and sphericity, physical and rheological properties of liquids on gas holdup were studied in a three phase internal loop airlift fluidized bed reactor. Air was used as a gas phase. Water, n-butanol, various concentrations of glycerol (60% and 80%) were used as Newtonian liquids and different concentrations (0.25%, 0.6% and 1.0%) of carboxy methyl cellulose (CMC) solutions were used as non-Newtonian liquids. Spheres, Bearl saddle and Rasich ring with different diameters were used as solid phases. Superficial gas velocity varied from 0.000142 m/s to 0.005662 m/s and superficial liquid velocity varied from 0.001 to 0.12 m/s. The experimental result shows that increase in particle size and superficial gas velocity increases gas holdup and decreases with increase in concentration of Newtonian and non-Newtonian systems. Based on the experimental results a separate correlation was developed to predict gas holdup for both Newtonian and non-Newtonian liquids for wide range of operating conditions.     

Full Text:



Copyright (c)

Modern Applied Science   ISSN 1913-1844 (Print)   ISSN 1913-1852 (Online)  Email:

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the '' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.