Numerical Analysis of Propagation of Nonlinear Waves in Prestressed Solids
- Vladimir Levin
- Anatoly Vershinin
- Konstantin Zingerman
Abstract
The details of numerical algorithms implemented in CAE FIDESYS for the analysis of the propagation of nonlinear waves in elastic and viscoelastic bodies are discussed. It’s taken into account that waves propagation lead to new strains which superimpose on existing stresses (induced anisotropy) in the media. For the formulation of problem we used the theory of repeated superposition of large strains. The details of numerical algorithms for the analysis of the propagation of nonlinear waves in elastic and viscoelastic bodies are discussed. The implementation of the spectral element method for the nonlinear dynamic problems of elasticity under finite strains is considered. Some details of parallel computing on multicore and multiprocessor systems for the problems of nonlinear dynamic elasticity are presented. The results of numerical experiments obtained in CAE Fidesys are shown, in particular: the analysis of propagation of nonlinear shock wave; the analysis of propagation of surface waves; the dynamic processes related with the origination of a hole in a weakly compressible nonlinear-viscoelastic material.
- Full Text: PDF
- DOI:10.5539/mas.v10n4p158
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org