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Abstract 
The details of numerical algorithms implemented in CAE FIDESYS for the analysis of the propagation of 
nonlinear waves in elastic and viscoelastic bodies are discussed. It’s taken into account that waves propagation 
lead to new strains which superimpose on existing stresses (induced anisotropy) in the media. For the 
formulation of problem we used the theory of repeated superposition of large strains. The details of numerical 
algorithms for the analysis of the propagation of nonlinear waves in elastic and viscoelastic bodies are discussed. 
The implementation of the spectral element method for the nonlinear dynamic problems of elasticity under finite 
strains is considered. Some details of parallel computing on multicore and multiprocessor systems for the 
problems of nonlinear dynamic elasticity are presented. The results of numerical experiments obtained in CAE 
Fidesys are shown, in particular: the analysis of propagation of nonlinear shock wave; the analysis of 
propagation of surface waves; the dynamic processes related with the origination of a hole in a weakly 
compressible nonlinear-viscoelastic material. 
Keywords: computer-aided engineering, finite element analysis, wave propagation, spectral element method, 
nonlinear waves, finite strains, parallel computing 
1. Introduction 
The dynamic effects are important in nonlinear solid mechanics (Blend, 1969). The subject of special interest is 
the propagation of waves in prestressed solids. The preliminary deformation leads to some important effects such 
as the dependence of wave velocity on the initial strains, the stress-induced anisotropy, and others. These effects 
are analysed in the present paper. For the formulation of problems we used the theory of repeated superposition 
of large strains (Levin, 1998). It’s taken into account that waves propagation leads to new strains which 
superimpose on existing strains (induced anisotropy) in the media. The details of numerical algorithms 
implemented in CAE FIDESYS for the analysis of the propagation of nonlinear waves in elastic and viscoelastic 
bodies are discussed (Levin & Vershinin, 2008; Levin, Zingerman, Vershinin, Freiman, & Yangirova, 2013). The 
implementation of the spectral element method for the nonlinear dynamic problems of elasticity under finite 
strains is considered. Some details of parallel computing on multicore and multiprocessor systems for the 
problems of nonlinear dynamic elasticity are presented. The results of numerical experiments obtained in CAE 
Fidesys (Levin, Zingerman, Vershinin, & Nikiforov, 2012; the official website of Fidesys Limited, 2015) are 
shown, in particular: the analysis of propagation of nonlinear shock wave; the analysis of propagation of surface 
waves; the dynamic processes related with the origination of a hole in a weakly compressible 
nonlinear-viscoelastic material. 
2. The Mathematical Statement of Problem 
As elastic waves propagation occurs in the body, already having finite strains, it leads to the additional strains. 
The theory of repeated superposition of large strains is used for the problem solution (Levin, 1998; Levin & 
Vershinin, 2008; Levin et al., 2013). Let us consider the basic equations, initial conditions, and boundary 
conditions of this theory. Multiple states of a body are distinguished: the initial (undeformed) state; n-1 
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intermediate states, for which body goes step by step by successively applied external effects or, in the case of 
the viscoelastic material,processes taking place in it; final or current (n+1)-th state, to which body goes after the  
application of all external loads to it in the predetermined order. 
The problem is formulated for the (n+1)-th state in coordinate basis of the n-th state.  
The equation of motion 
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Constitutive equations for Murnaghan’s material 
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Geometrical relations 
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Here 1,0 +nF  is the deformation gradient in transition from the initial state to the current (n+1)-th state; 
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1  is the displacement vector defining the transition from the n-th state to the (n+1)-th state; 
n
r  is the 

radius-vector of a particle in the n-th state; 1,0 +nJ is the relative volume variation in transition from the initial 

state to the (n+1)-th state; 1,0 +nσ is the true stress tensor for the (n+1)-th state; (at 0=n , this tensor is the 

Cauchy stress tensor); 1,0 +n
k
S is the generalized stress tensor in the base of the k-th state under transition from the 

initial state to the (n+1)-th state; at k=0, this tensor is the second Piola–Kirchhoff stress tensor; 1,0
0

+nE  is the 

generalized strain tensor in the base of the initial state that describes strains accumulated in transition from the 

initial state to the (n+1)-th state; 
n

ν  is the normal vector to the boundary nΓ of a body in the n-th state. The 
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superscript T denotes the transposition, and the superscript –T denotes the superposition of transposition and 
inversion of the second-rank tensors. 
3. Numerical Solution 
We will seek a solution of a presented system of partial differential equations using spectral element method 
(SEM) (Komatitsch & Violette, 1998; Komatitsch & Tromp, 2002; Komatitsch, Goddeke, Erlebacher & Michea, 
2010), and Galerkin’s weak formulation (Zienkiewicz & Taylor, 1971). The distinctive features of SEM, as 
applied to the numerical solution of discussed problems, are:  
1) A fast computational process due to a diagonal mass matrix (Komatitsch & Violette, 1998; Komatitsch & 
Tromp, 2002), thanks to a special kind of cubature formula for the domain integration. In addition, an explicit 
time integration scheme is used.  

2) A high accuracy of the solution’s approximation for a small number of mesh elements. A numerical 

approximation error is estimated as [ ] )(mCuu hh ≤−  , where mmehCmC −= 1)(  for SEM, h is a typical size 

of the mesh elements, m is the order of approximation inside a spectral element, and hu  is a numerical solution.  

3) A convenient parallelization of computations for multithreading and multiprocessing systems, for example, 
using OpenMP and MPI technologies. High order of spectral element and data locality inside an element make 
this method well-parallelizable on hybrid massively parallel architectures with accelerators (Komatitsch et al., 
2010; Charara, Vershinin, Sabitov, & Pekar, 2011). 
Let us rewrite an original differential formulation in a weak form (Zienkiewicz & Taylor, 1971). Equation (1) is 
multiplied on a shape function iN and integrated over the region Ω occupied by a body.  
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Taking into account the boundary conditions (3) and using Green’s formula we get: 
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An approximation of unknown displacements )(1 tun+  by the shape functions is used:  
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where mK  is the number of nodes in a spectral element mesh, and )()( tu k  are unknown nodal displacements. 
Substituting equation (12) in (11) we get the following Galerkin system of ordinary differential equations: 
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here U is a vector of unknown nodal displacements of mK3 size; 
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N is a vector compound of the shape functions kN . 
Let us remark that nonlinearity in (13) is presented only for displacements and for their time derivatives. This 
observation allows us to apply well-known time integration schemes that were developed for solving dynamic 
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problems of linear elasticity. We will use a time discretization scheme SS22 (Zienkiewicz & Taylor, 1971) for the 
solving the obtained system (13). This method is a second-order-accuracy method in time. Another similar 
method GN22 is considered also by Zienkiewicz & Taylor, 1971.  
Let us suppose that we know a solution at the j-th time step - jU . Then at the (j+1)-th step we will seek the 
solution in the following way: 

2
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where jj tt −= +1τ , and α  is an unknown correction vector. 
Substituting the expression (14) in equation (13) for some time moment between nt  and 1+nt , we get: 
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Having solved the given system of nonlinear algebraic equations (15) using the Newton iterations (Zienkiewicz 

& Taylor, 1971) one can find α  and obtain 1+jU , 
dt

dU j 1+   by means of (14). The absolute stability of that 

method is guaranteed while 12 θθ ≥ , 2
11 1 ≥≥ θ (Zienkiewicz & Taylor, 1971). It is recommended to take as a 

time step a minimum characteristic size of the spectral element divided by the maximum velocity of elastic 
waves (Zienkiewicz & Taylor, 1971). At 02 =θ  the time integration scheme is fully explicit. 

This algorithm is implemented in CAE Fidesys [5] based on the spectral element method.  
4. Results 
Let us present results of solving model problems. Let us consider square elastic plate with height-to-width aspect 
ratio 1:20, fixed by joints, as is shown in Figure 1. Plate consists of two parts. Left part is not deformed; while 
the right one is loaded by tensile load along the horizontal axis (as a result there are induced strains in that part). 
The load is removed instantaneously at the initial moment. The system comes out from the equilibrium state and 
two waves start to propagate in the plate from its center: to the left – a loading wave, to the right – an unloading 
wave.  
 

  

Figure 1.  The geometry of the problem and boundary conditions 
 
The material of the plate is the Murnaghan material (λ = 0.39, G = 0.186, 013.03 −=С , 07.04 −=С ,

063.05 =С ). The initial density of the material is 10 =ρ . The initial loading of the right part of the plate 
G1.011 =σ . A time step 00125.0=τ . All material constants were related to G while problem solving.  

The dependency of loading and unloading waves’ velocities on the value of the initial loading is shown in Figure 
2. One can see that the loading and unloading waves’ velocities differ essentially – and that difference increases 
with the initial loading. This result is due to the preliminary loading of the body’s part, where the loading wave 
propagates. 
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Figure 2. The dependency of waves’ velocities on the initial stress level 
 
We present further a series of tests on numerical convergence in order to verify the results of numerical solution. 
Five calculations were performed with decreasing time-step and element size. The parameters of these 
calculations are shown in Table 1. 
 
Table 1. Mesh parameters for the test on numerical convergence 

The step of mesh refinement The number of nodes along the longest side of the plate The time step
x1 400 0.2 
x2 800 0.1 
x4 1600 0.05 
x6 2400 0.033 
x8 3200 0.025 

 
The change of the true stress tensor component 11σ along the middle line of the plate at different time moments 
is shown in Figure 3 for different mesh sizes (colored). 

The presented graphs show that black and red lines, which correspond to the maximum mesh refinement, almost 
coincide, which proves the mesh convergence in space. 
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Figure 3. The distribution of 11σ along the plate at different time moments 

 

Let us consider further a problem of modelling of cylindrical surface waves propagation in the elastic body that 
is pre-loaded by the gravity force. For the convenience, all calculations will be performed in relative 
(dimensionless) quantities. A cylindrical sample (Figure 4) with the height 10, external radius 1 and internal 
radius 0.1 made of the Murnaghan material (Lurie, 1990) with 1.2/ =Gλ , 07.0/3 −=GC , 37.0/4 −=GC , 

34.0/5 =GC , and the initial density 22000 =ρ , is loaded by the gravity force directed down along the 
cylindrical axis of symmetry. The force produces initial strains inside the solid.  

A point force acting along the direction )0,1,0( −=fn  is applied in the point )0,0,0(=fx . The force’s 
amplitude varies in time in the following way: 
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Figure 4. The geometry of the problem of cylindrical waves’ propagation 

 
The results of calculations, showing the distribution of horizontal displacements in different time moments are 
presented in Figure5 for the part of the cylindrical sample nearby the location of the external force. The elliptic 
wave fronts clearly prove the presented pre-stressed solid state with an induced anisotropy. 
 

Figure 5. The displacement field at different time moments. The elliptic wave fronts clearly prove the presented 
pre-stressed solid state with an induced anisotropy 

 
In the end of this section let us present the results of solving a problem of the origination of a circular hole in a 
homogeneous incompressible viscoelastic plate which is preliminarily stretched along the Y-axis. The plate is in 
the plane strain state, and the strains are finite. The material properties of the plate correspond to 
polydieneurethane. The constitutive equations are written in the form (Levin et al., 2013) 
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The origination of the hole is modelled by the instantaneous removal of loadings from its boundary at time 
moment t=1 sec. We note that posing and solving problems of holes’ origination under finite strains are only 
possible using the theory of repeated superposition of finite (large) strains (Levin, 1998; Levin et al., 2013).  
Figure 6 shows the distribution of true stress tensor component 22σ  in the time moments t =1.03 sec (left) and t 
= 1.04 sec (right). 

Figure 6. The distribution of stress 22σ  at different time moments. t =1.03 sec (left) and t = 1.04 sec (right) 
 
Figure 7 displays the mesh and the change of stresses in two material points (these points are marked out in the 
figure) with respect to time for the several values of a time integration step. One can observe a numerical 
convergence in time. 
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a b 

Figure 7. The spectral-element mesh (a) and the stress variation with respect to time in the marked points (b) for 
different values of time step. A numerical convergence is clearly observable 

 
5. Conclusion 
An approach to the numerical solution of the dynamic problems of solid mechanics for the pre-loaded nonlinear 
elastic and viscoelastic bodies under the finite strains is considered in the article. The problem statement is done 
using the theory of repeated superposition of large strains. The numerical algorithms for problems solving are 
based on the spectral element method. This method is applied for solving the considered problems for the first 
time. Developed algorithms have a possibility for an efficient parallelization of the computational process. The 
presented solution of a 3D dynamic problem for the hollow cylinder which requires significant computing 
resources, demonstrates an efficiency of developed algorithms from the computational point of view. 
An approach, described in the article, allows numerically solving the problems of propagation of 3D acoustic 
waves in a nonlinear elastic or viscoelastic loaded body with initial, in general terms, finite strains. This 
approach develops the mechanical models proposed by Levin (1998).  
The results of numerical solutions of the problems presented in the article demonstrate the significant impact of 
pre-loading on the stress-strain states of solids. For example, in case of the problem of a wave propagation in the 
partially loaded plate a velocity of an unloading wave was 40% more for the initial loading p=2.5G than for the 
initial loading p=1G. For the problem of wave propagation caused by the action of a point force in the pre-loaded 
hollow cylinder, a wave front has the shape which differs significantly from the spherical one. This fact is 
explained by an induced anisotropy caused by an impact of pre-loading along the axis of the cylinder. 
In the authors’ opinion while using dynamic strength criterions under finite strains, the results of solving such 
problems and problems of a non-stationary origination of inclusions in loaded solids could be used for the 
dynamic problems of nonlinear strength theory. 
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