Data Mining Techniques and Preference Learning in Recommender Systems
- Bandar Mohammed
- Malek Mouhoub
- Eisa Alanazi
- Samira Sadaoui
Abstract
The importance of implementing recommender systems has significantly increased during the last decade. The majority of available recommender systems do not offer clients the ability to make selections based on their choices or desires. This has motivated the development of a web based recommender system in order to recommend products to users and customers. The new system is an extension of an online application previously developed for online shopping under constraints and preferences. In this work, the system is enhanced by introducing a learning component to learn user preferences and suggests products based on them. More precisely, the new component learns from other customers’ preferences and makes a set of recommendations using data mining techiques including classification, association rules and cluster analysis techniques. The results of experimental tests, conducted to evaluate the performance of this component when compiling a list of recommendations, are very promising.
- Full Text: PDF
- DOI:10.5539/cis.v6n4p88
Journal Metrics
WJCI (2022): 0.636
Impact Factor 2022 (by WJCI): 0.419
h-index (January 2024): 43
i10-index (January 2024): 193
h5-index (January 2024): N/A
h5-median(January 2024): N/A
( The data was calculated based on Google Scholar Citations. Click Here to Learn More. )
Index
- Academic Journals Database
- BASE (Bielefeld Academic Search Engine)
- CiteFactor
- CNKI Scholar
- COPAC
- CrossRef
- DBLP (2008-2019)
- EBSCOhost
- EuroPub Database
- Excellence in Research for Australia (ERA)
- Genamics JournalSeek
- Google Scholar
- Harvard Library
- Infotrieve
- LOCKSS
- Mendeley
- PKP Open Archives Harvester
- Publons
- ResearchGate
- Scilit
- SHERPA/RoMEO
- Standard Periodical Directory
- The Index of Information Systems Journals
- The Keepers Registry
- UCR Library
- Universe Digital Library
- WJCI Report
- WorldCat
Contact
- Chris LeeEditorial Assistant
- cis@ccsenet.org