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Abstract 

The importance of implementing recommender systems has significantly increased during the last decade. The 
majority of available recommender systems do not offer clients the ability to make selections based on their 
choices or desires. This has motivated the development of a web based recommender system in order to 
recommend products to users and customers. The new system is an extension of an online application previously 
developed for online shopping under constraints and preferences. In this work, the system is enhanced by 
introducing a learning component to learn user preferences and suggests products based on them. More precisely, 
the new component learns from other customers’ preferences and makes a set of recommendations using data 
mining techiques including classification, association rules and cluster analysis techniques. The results of 
experimental tests, conducted to evaluate the performance of this component when compiling a list of 
recommendations, are very promising. 
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1. Introduction 

Designing an appropriate recommender system, to meet the business needs of clients is the first and foremost 
consideration of this research. A recommender system for online shopping, based on preference learning, is a 
potential tool for business development and marketing. In this paper, an online shopping system is extended and 
based on preference elicitation (Alanazi, Mouhoub, & Mohammed, 2012; Mouhoub, Mohammed, & Alanazi, 
2012), to recommend products based on customer suggestions. Recommender systems have significantly 
increased in the past decade. Preference learning in a recommender system is considered one of the most popular 
and significant techniques from Information Filtering (Eaton & Wagstaff, 2006; Gemmis, Iaquinta, Lops, Musto, 
Narducci, & Semeraro, 2009). Information filtering assists in the removal of insignificant information and 
content that does not need to be stored in a customer profile. When a recommender system is applied, for 
instance, to learn the interests of users (Eaton & Wagstaff, 2006; Gemmis et al., 2009), it will study and learn 
some of the user’s behavioural aspects in order to generate and recommend a list of products (Eaton & Wagstaff, 
2006; Gemmis et al., 2009). Learning the user’s preferences is one technique to discover the best outcomes to 
recommend items (Eaton & Wagstaff, 2006; Gemmis et al., 2009). 

Currently, it is important for clients to be assisted with their choices due to the exponential increase in existing 
data (Gemmis et al., 2009). Adaptive tools, algorithms, and user profiles (Gemmis et al., 2009) are the three most 
significant components for designing and managing personalized recommendations. The popular recommender 
systems approaches are Content-Based, Collaborative, Demographic, Knowledge-Based and Hybrid (Suguna & 
Sharmila, 2013; Tran, Phung, & Venkatesh, 2012; Gemmis et al., 2009). There are many techniques for learning 
user profiles including probabilistic approaches, neural networks, decision trees and association rules 
(Deshpande & Karypis, 2004; Gemmis et al., 2009). 

The idea of preference learning is easy to understand but challenging to implement. A line of investigation is 
presented as follows: “Can we learn, and know the preferences of users especially when there are missing data”? 
Also, “Are there any application platforms or recommender system for online shopping based on learning 
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representation. The information can be processed with machine learning techniques in order to learn user 
preferences for use in the recommendation procedure (Eaton & Wagstaff, 2006; Gemmis et al., 2009). 

3. Data Mining Techniques 

Data mining is the field of extracting valuable information and knowledge from large amounts of data stored in 
databases. It is the process of finding out formerly unknown, useful and valuable patterns from a large amount of 
data stored in a database (Kaur & Aggarwal, 2010; Tan, Steinbach, & Kumar, 2005; Han & Kamber, 2006). 
Database mining deals with the data stored in a database administration scheme/system. The tools and 
techniques for data mining identify business trends which may occur in the future. It also answers many 
questions of businesses with regard to time consumption for decision making (Kaur & Aggarwal, 2010). There 
are two significant reasons why data mining has attracted and gained a lot of attention in the last few years (Kaur 
& Aggarwal, 2010; Tan, Steinbach, & Kumar, 2005). It has the capability to store and collect a large amount of 
data while this storage quickly increases every day. As a result of improvements in processing power, there is the 
potential to store a large amount of relevant data which can be processed anytime. The most significant reason is 
the need to transform data into useful and valuable knowledge and information (Kaur & Aggarwal, 2010; Tan, 
Steinbach, & Kumar, 2005; Han & Kamber, 2006). Data mining examines databases in order to discover hidden 
patterns and valuable information that sometimes experts may not observe as it occurs outside their expectations 
(Kaur & Aggarwal, 2010; Tan, Steinbach, & Kumar, 2005). The discovered patterns are accessible to the user 
and could be stored as new information in the information database (Kaur & Aggarwal, 2010; Han & Kamber, 
2006; Han, Kamber, & Pei, 2011). 

3.1 Data Mining Association Rules 

Association rule mining (Kaur & Aggarwal, 2010; Tan, Steinbach, & Kumar, 2005; Han & Kamber, 2006) is a 
data mining task for finding and discovering hidden associations between items in a transaction. It is a 
well-known technique to find and discover interesting and attractive relationships between variables and items in 
large databases (Kaur & Aggarwal, 2010; Han & Kamber, 2006). This method relies on the extraction of an 
association rule with algorithmic techniques such as the FP-tree, Apriori and AprioriTid algorithms to obtain and 
generate the appropriate association rules between items in a transaction (Kaur & Aggarwal, 2010; Han & 
Kamber, 2006; Han, Kamber, & Pei, 2011). More precisely, it is based on association rule evolution by utilizing 
different measures such as support and confidence factors. Support (s) defines how frequently a rule is 
appropriate, and applicable to a particular data set, whereas confidence (c) defines how often items in set B 
appear in transactions containing set A (Tan, Steinbach, & Kumar, 2005). The next two equations are the formal 
definitions for support (s) and confidence (c) (Tan, Steinbach, & Kumar, 2005): 

	ܣሺݏ  → ሻܤ ൌ 	ܣሺߪ ∪  ሻ/ܶ (1)ܤ

 ܿሺܣ	 → ሻܤ ൌ 	ܣሺߪ ∪  ሻ (2)ܣሺߪ/ሻܤ

where s is a support and c is a confidence. A and B are sets, and T is a transaction. ߪ is the support and 
confidence count and ߪሺܣሻ is the union count of A: 

ሻܣሺߪ  ൌ |ሼ	ݐ௜	|	ܣ	ݏ݅	ܽ	ݐ݁ݏܾݑݏ	݂݋	ݐ௜	ܽ݊݀	ݐ௜ ∈ ܶሽ| (3) 

Association rules are utilized in several areas, such as “medical diagnosis and research, website navigation 
analysis, churn analysis and prevention, market basket analysis, and retail data analysis” (Kaur & Aggarwal, 
2010; Han & Kamber, 2006; Han, Kamber, & Pei, 2011). A classic example is the market basket analysis where 
retailers identify and analyze what customers would like or prefer to purchase to find an association between 
items that customers have purchased. Retailers can identify frequent items between customers to aid and assist 
them in order to plan diverse item placement, advertising and inventory administration (Kaur & Aggarwal, 2010; 
Tan, Steinbach, & Kumar, 2005; Han & Kamber, 2006). There are many algorithmic techniques used for 
association rule mining. The most popular are the Apriori, AprioriTid, Partition, FP growth, and Eclat algorithms 
(Hipp, G¨untzer, & Nakhaeizadeh, 2000). 

3.1.1 Example of Data Mining Association Rules 

Figure 1 shows an example of 10 transactions with 6 itemsets (Dell, Apple, Samsung, Sony, LG, Toshiba). In this 
example, the method for computing and calculating the support (s), and confidence (c) from 10 transactions with 
6 itemsets is shown. As mentioned in section 3.1, support (s) defines how frequently a rule is appropriate and 
applicable to a particular data set, whereas confidence (c) defines how often items in Y appear in transactions 
which contain X (Tan, Steinbach, & Kumar, 2005). For example, {Apple, Samsung}  {LG}, where X = 
{Apple, Samsung} AND Y = {LG}. The number of times the subsets {LG, Apple} and the subset {Samsung} 
appear in 10 transactions is determined to calculate the support (s) for the following rule: {Apple, Samsung}  
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a low value and decreases when the value is high. Additional solutions and algorithmic techniques can be used in 
this system in order to recommend products, and make it easier for users. New techniques for preferences and 
constraints can be implemented and tested on the system to see if the latter can handle more complex preferences 
and constraints. This recommender system can be generalized, and added to any interactive recommender 
application where the user and customer are involved in the procedure of choosing their products. 
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