Development of Underactuated Prosthetic Fingers with Joint Locking and Electromyographic Control

Bart Peerdeman, Stefano Stramigioli, Edsko E. G. Hekman, Dannis M. Brouwer, Sarthak Misra


Modern hand prostheses possess a large number of degrees of freedom. These degrees of freedom cannot simply be actuated by a single motor each, since their combined size and weight would exceed the limitations of an anthropomorphic prosthesis. Some hand prostheses try to remedy this by way of underactuation of the fingers or addition of entirely passive fingers, but this reduces the hand's ability to execute different grasp types.

We present a joint locking system, allowing certain degrees of freedom to be fixed during actuation of an underactuated finger. These locks are actuated by miniature solenoids, and allow the fingers to support a variety of grasp types. In this paper, these locks are implemented in a two-fingered prosthesis prototype, which is able to perform several grasping motions important for prosthesis users. This prototype is controlled by pre-recorded electromyographic signals, which control different grasp types and their opening/closing.

Various grasping experiments show that the prototype is able to execute three essential grasp types for daily living with a single main actuator, and can be intuitively controlled by means of six different electromyographic signals. This prototype demonstrates new joint locking mechanisms and control systems that can provide an anthropomorphic, myoelectric hand prosthesis with minimal actuation and intuitive control.

Full Text:




  • There are currently no refbacks.

Copyright (c)

Mechanical Engineering Research   ISSN 1927-0607 (Print)   ISSN 1927-0615 (Online)   Email:

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the '' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.


lockss_logo_2_120 images_120. proquest_logo_120