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Abstract 
Modern hand prostheses possess a large number of degrees of freedom. These degrees of freedom cannot simply 
be actuated by a single motor each, since their combined size and weight would exceed the limitations of an 
anthropomorphic prosthesis. Some hand prostheses try to remedy this by way of underactuation of the fingers or 
addition of entirely passive fingers, but this reduces the hand’s ability to execute different grasp types. 

A joint locking system is presented, allowing certain degrees of freedom to be fixed during actuation of an 
underactuated finger. These locks are actuated by miniature solenoids, and allow the fingers to support a variety 
of grasp types. In this paper, these locks are implemented in a two-fingered prosthesis prototype, which is able to 
perform several grasping motions. This prototype is controlled by pre-recorded electromyographic signals, 
which control the grasp type and opening/closing of the hand. 

Various grasping experiments show that the prototype is able to execute three essential grasp types for daily 
living with a single main actuator, and can be intuitively controlled by means of six different electromyographic 
signals. This prototype demonstrates new joint locking mechanisms and control systems that can provide an 
anthropomorphic, myoelectric hand prosthesis with minimal actuation and intuitive control. 

Keywords: hand prosthesis, underactuation, grasping, joint locking, electromyography 

1. Introduction 
Modern hand prostheses are becoming more and more anthropomorphic in their design (RSLSteeper, 2012; 
Touch Bionics Inc., 2011; Otto Bock, 2011). The most daunting aspect of this trend is the increase in degrees of 
freedom (DOFs) that have to be actuated and controlled. DC motors are the most common type of prosthesis 
actuator, and only a few of these large and heavy actuators can be placed inside the palm of the hand.  

This can be remedied by actuating multiple degrees of freedom with a single actuator, a technique known as 
underactuation. This technique has been implemented in other prosthesis projects with varying results. A linkage, 
such as that implemented in the Southampton hand (Light & Chappell, 2000), couples the finger joints’ motion 
using rigid bars. This allows the more distal joints of the finger to flex when the proximal joints’ movement is 
obstructed. To couple multiple finger linkages, a whippletree mechanism can be implemented, which distributes 
the actuator force appropriately. The movement pattern of the fingers can be influenced by changing the structure 
of the linkage. 

Underactuation can also be achieved via a series of freely rotating pulleys on each joint, which are connected by 
way of a single communal tendon (Carrozza et al., 2006). Since this system can only apply forces along the 
flexion direction due to the nature of the tendon, a second tendon or extension springs are required to allow full 
motion of the finger. The finger’s flexion motion depends on the friction and external forces on the joints, but 
can also be influenced by the relative radii of the pulleys. 

An alternative to the underactuation of multiple joints is the inclusion of passive or coupled joints (Pons et al., 
2004). The distal interphalangeal joints are often implemented as such, because the angle between the distal and 
medial phalanges is also strongly coupled in the human hand. Similarly, the movement of the little and ring 
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fingers can be coupled while still resembling the human hand’s freedom of motion. 

Another advantage of some of these systems is that the finger will flex in such a way as to accommodate the 
shape of a grasped object. However, the main drawback of these underactuated systems is the loss of control 
over the fingers’ motion; in free space, such underactuated fingers will follow a set trajectory determined by their 
mechanical structure. In modern commercial prostheses with underactuated fingers (RSLSteeper, 2012; Touch 
Bionics Inc., 2011; Otto Bock, 2011) this trajectory is designed to be usable for both power and precision 
grasping, but is less then ideal for either. 

The ability to selectively disable the motion of certain joints allows a hand to match the fingers’ trajectory to the 
grasp type selected by the user, as seen in Figure 1. Also, the motion of certain fingers can be completely 
disabled, which allows all fingers to be connected to a single main actuator. There has been some research on 
mechanisms that passively disengage joints (Ulrich et al., 1989; Chu et al., 2008), as well as active electrostatic 
joint locking on robotic grippers (Aukes et al., 2012). In (Peerdeman et al., 2012b), the use of miniature 
mechanical joint locks is explored for use in hand prostheses. The limitations imposed by an anthropomorphic 
hand prosthesis lead to a lock actuation system integrated into the phalanges of the fingers, as well as a lock 
design which eliminates the need for continuous actuation. 

These joint locks have been implemented in human-sized fingers, based on a friction amplification principle (see 
Figure 2). The locks are actuated by solenoids integrated into the body of each phalanx. Though these solenoids 
provide only a minimal stroke and force, these are sufficient due to the self-locking properties of the friction 
lock. 

When making a prosthesis with a large number of available DOFs, it is important to consider their controllability 
by the user as well. Detection of myoelectric (ME) signals is the most common method of control for modern 
externally actuated hand prostheses (Peerdeman et al., 2011) It is a non-invasive method of obtaining signals 
directly correlated to muscle activity, though current classification methods only allow a few usable control 
signals to be distinguished. This control bottleneck strongly limits the variety of prosthesis motions that can be 
achieved. To compensate for this, a control system can be constructed around a discrete selection of grasp types, 
which can be selected and activated manually; the execution of these grasps will be done automatically. 

In this article, the mechanical design of a new two-fingered prosthesis prototype is described, using 
tendon-pulley underactuation and joint locking. An ME control system is implemented as well, using 
electromyographic (EMG) signals to control various grasp types and motions of the prototype. In Section 2, the 
structure of the prototype is described, from the design of the phalanges to the joint locking and actuation 
systems. Section 3 describes the implementation of the control system, consisting of an EMG classifier, 
high-level grasp planner, and low-level finger controller. In Section 4, the experimental setup and test protocol 
are described. The results are shown in Section 5. A discussion of the results is found in Section 6, as well as the 
conclusion and directions for future work. 

 

 

Figure 1. Various finger trajectories that can be attained in a two-fingered, underactuated hand by means of joint 
locking. The paths of the actuator tendons are shown as blue lines. Red crosses indicate locked joints, and green 

circles indicate unlocked joints 
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Figure 2. Friction amplification joint locking concept: If the friction pawl is brought into contact with the drum 

by the solenoid actuator, friction between pawl and drum will pull the two together, locking the joint 

 
2. Mechanical Design 
The design of the prosthesis prototype is based on achieving a large variety of finger motions with minimal 
actuation. The prototype consists of two fingers with two flexion/extension DOFs each, which are connected by 
a single tendon to the main actuator; a diagram of the prototype is shown in Figure 3. The underactuated nature 
of this tendon-pulley system precludes individual control of the fingers’ DOFs. This is compensated for by 
including joint locking mechanisms to block the flexion motion of specific joints, while leaving the others free to 
move. By locking different combinations of joints, the fingers can be made to perform a variety of flexion 
trajectories relevant to grasps in activities of daily living (Peerdeman et al., 2011). 

2.1 Finger Structure 

The external dimensions of the finger need to be close to those of the human finger, for reasons of usability and 
cosmetic appearance. This puts tight constraints on the size of the joint locking mechanism and its solenoid 
actuators. Therefore, a finger joint diameter of 15 mm is chosen. The phalanx dimensions can be found in Table 
1, and for reference, phalanx dimensions for a male index finger are shown in Table 2. The internal structure of 
one of the fingers’ medial and proximal phalanges is shown in Figure 4. Each actuated joint contains a freely 
rotating pulley, a drum for the joint locking mechanism, and a rotational spring to provide an extension force. 
The phalanges are constructed out of aluminum, whereas the joint shafts and lock components are made of 
(hardened) steel. 

 

Table 1. Dimensions of the prototype’s phalanges 

 Length (mm)  Width (mm)  Height (mm) 

Distal 28.0 15.0 15.0 

Medial 33.0 18.0 17.0 

Proximal 50.0 18.0 15.0 

Metacarpal 42.5 18.0 15.0 

 

Table 2. Average dimensions of male index phalanges, with a hand length of 195 mm and breadth of 88.5 mm 
(Buchholz & Armstrong, 1991) 

 Length (mm)  Width (mm)  Height (mm) 

Distal 18.9 16.4 13.7 

Medial 27.9 18.2 16.3 

Proximal 47.8 18.5 18.7 
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Figure 3. The two-fingered prototype, showing internal mechanisms and tendon routings. The phalanges are 

indicated on the right, while their dimensions are listed in Table 1 

 

2.2 Joint Locking 

In (Peerdeman et al., 2012b) two joint locking concepts were evaluated; a gear-based system and a friction-based 
system. The gear-based system has an inherent indexing resolution and was found to require a higher actuation 
force. Therefore, the friction-based mechanism has been chosen for the prototype. The principle of friction 
locking is illustrated in Figure 2. This mechanism consists of two main components: a drum fixed to the distal 
phalanx of a joint, and a friction pawl connected to the proximal phalanx. The friction pawl can be rotated 
around its pivot by the solenoid actuator. When the friction pawl is brought into contact with the drum, the 
rotation of the drum will pull the pawl closer to it, increasing the friction force between both until the joint’s 
motion is completely blocked. This self-locking property means actuation is only needed to bring the lock parts 
into contact, which reduces the solenoids’ actuation requirements. Once the actuation force is removed from the 
joint, an extension spring will separate the drum and pawl, releasing the lock. 

 

 

Figure 4. Internal structure of one of the fingers’ medial and proximal phalanges, showing the friction lock 
components 

 

Based on initial test results, a new set of friction pawls has been designed for implementation in a phalanx-sized 
enclosure. The contact surface of these pawls follows a logarithmic spiral around its rotation axis (Peerdeman et 
al., 2012b), as shown in Figure 5. The effect of this surface is shown in Figure 5 as well: the effects of changes in 
the distance between drum and pawl (due to play and tolerances in the components, for example) on the contact 
angle are minimized.  
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Figure 5. Demonstration of the effect of the logarithmic spiral surface: Changes in the distance between the 
rotation axes of the drum and the pawl (black arrow) are compensated by rotation of the pawl (blue arrow), 

without affecting the contact angle (red line). The green line illustrates the spiral curve 

 

2.3 Actuation 

The two fingers of the prototype are actuated by a single DC motor. The motor is a Maxon EC-max 22 (Maxon 
Motor AG, Sachseln, Switzerland) connected to a spindle drive for translational motion. This motor moves a 
pulley block, which actuates the single flexion tendon routed around all the joint pulleys, as seen in Figure 3. 
The joint locks can then be used in order to actuate only a single finger or enable different grasp types. The locks 
themselves are each actuated by an in-phalanx pull-type solenoid with extension spring. 

2.4 Sensors 

Effective control of the fingers requires that force and position information be made available to the control 
system. To this end, each joint contains a Hall-effect based angle sensor, which can be used to determine the pose 
of the finger. The medial phalanx of each finger is an adapter for a BioTac tactile sensor system (SynTouch LLC, 
Los Angeles, CA, USA) (Wettels, 2011). The BioTac sensor replaces the distal phalanx of the finger. The device 
features two sensing modalities relevant to prosthesis control: a series of 19 electrodes that collectively 
determine the magnitude and location of external pressures on the fingertip, and a main pressure sensor that 
detects high-frequency variations in the applied pressure. With this information, it is possible to automatically 
control the fingers’ interaction with the environment. However, the user should also be able to control the 
automated motion of the fingers. Therefore, a two-level control system has been implemented, which is 
discussed in the next section. 

3. Control 
The prototype’s control system is based on a previously developed controller, which was used on the University 
of Bologna (UB) Hand IV in (Peerdeman et al., 2012a). The prototype’s range of motions is divided into distinct 
grasp types, which can be used to grasp a variety of objects, as seen in Figure 6. The following grasp types are 
derived from a general set of activities of daily living (Peerdeman et al., 2011): 

• Cylinder grasp: For this power grasp the thumb is opposed to the other fingers, and the object to be grasped is 
surrounded by the hand. 

• Lateral grasp: In this grasp, the fingers are fully flexed, and the unopposed thumb is used to hold flat objects 
such as keys or cards. 

• Tripod grasp: This precision grasp uses the index and middle fingers opposed to the thumb. The fingers’ distal 
and medial joints remain extended, while the proximal joints are flexed. 

However, each of these grasp types requires different joint locking configurations and finger trajectories, which 
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can be demonstrated on the prototype as follows: 

• Cylinder grasp: No joints are locked; the fingers show normal underactuated behavior. This allows the grasping 
ability of the finger to be evaluated. 

• Lateral grasp: In this grasp, it is important to exclude certain fingers from the grasp motion at different times. 
One finger will be completely locked, while the other finger remains free to move. This configuration shows that 
multiple fingers can be individually actuated by a single motor. 

• Tripod grasp: This grasp requires the actuation of only the proximal joints; the distal joints will be locked. This 
demonstrates the ability to increase the controllability of underactuated fingers by temporarily reducing their 
DOFs. 

For the remainder of the paper, the grasp types will be used to refer to these locking configurations. 

EMG signals from the user are used to select one of these grasp types, and to determine when to open and close 
the selected grasp. Once a grasp has been selected, the high-level controller plans the grasp, actuating the joint 
locks based on the motion of each of the fingers. Then, the low-level controller uses the DC motor to control the 
fingers to the desired end positions with the appropriate forces. 

 

 
Figure 6. Three objects used in the grasping experiments. From left to right: mug (82 mm diameter), box (30 mm 

thickness), and USB flash drive (8 mm thickness) 

 

3.1 Electromyographic Classification 

EMG classification is used to couple the activation of different muscle groups in the forearm to the input signals 
of the high-level control system. In (Boere et al., 2010) multi-channel EMG was used to classify up to eight 
different muscle contraction types by means of an electrode array placed on the forearm. Based on this system, 
an EMG classifier has been developed using pre-recorded test data. In order to control the prototype, six 
different signals need to be identified: 

• Cylinder: This signal selects a grasp without any joint locking. 

• Lateral: With this signal, all joints of one finger are locked. 

• Tripod: This signal locks the proximal joints of each finger. 

• Close: To flex the unlocked joints of each finger. 

• Open: To extend all finger joints. 

• Stop: To abort the grasp and return the hand to its fully extended position. 

Each of these signals corresponds to a certain muscle contraction type. A test set is constructed from a series of 
known pre-recorded signals. This test set is used to train a linear discriminant analysis classifier (Boere et al., 
2010). This classifier can then be used to identify the signal type of a new contraction signal. 

3.2 High-Level Control 

Considering the limits of EMG classification, the high-level control system should be operable with only a few 
input signals. This can be accomplished by combining user-controlled and automated actions to perform a grasp. 
The grasp type is actively selected by the user, but execution of the grasp is performed automatically once a 
closing signal is received; this keeps grasp control intuitive to the user. The possible actions of the prototype are 
organized in a state machine, which can be seen in Figure 7. The states are described as follows: 
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• Preshaping: Once a grasp type signal (Cylinder, Lateral or Tripod) is received, the system moves to this state 
immediately. The joint locks are automatically moved into the right positions for the desired grasp. Once the 
locks are in position, the system moves to the Ready state. 

• Ready: In this state, the hand remains in the preshaping position. From here, a new grasp type can also be 
selected. Once a Close signal is received, the system moves to the Closing state. 

• Closing: The grasp is automatically closed. If the user wishes to stop the grasp, an Open signal will move the 
system to the Opening state to extend the fingers. Once each finger involved in the grasp reports sufficient 
external force to establish contact, the system moves on to the Hold state. 

• Hold: The fingers will automatically exert a constant force on the held object. If the user gives an Open signal, 
the system moves to the Opening state and the object is released. 

• Opening: This state ends the grasp by automatically extending the involved fingers. The system moves to the 
Ready state once the fingers are fully extended. 

 

 

Figure 7. Grasp control state machine: Dashed arrows are automatic state changes, while the Open and Close 
signals originate from the electromyographic classifier 

 

3.3 Low-Level Control 

The low-level controller is tasked with moving the fingers to their desired positions, while applying the proper 
forces to any external obstructions. Initially, a force controller was implemented, which moves the fingers at a 
fixed velocity while no external forces are present. Once contact is established, the fingertip force is controlled to 
a set value. 

However, impedance control is a more appropriate way of approaching interaction with the environment (Hogan, 
1985), and therefore such a controller has been implemented on the prototype instead. The controller derives the 
force to be applied to the fingers (F) from the difference between their desired state (xd, x’d) and measured state 
(x, x’) as follows (Peerdeman et al., 2012a): 

       F = D(x’d - x’) + K(xd - x)                               (1) 

If EMG amplitude information is available, the user can control the applied force directly by changing the value 
of the controller’s stiffness (K) or damping (D) constants. 

4. Experiments 
This section describes the experimental setup, as well as the experiments used to evaluate the prototype’s 
mechanical design and control system. 

4.1 Experimental Setup 

The experimental setup consists of the two-fingered prototype, its actuation systems (DC motor and solenoids), 
and its sensing systems (Hall sensors, BioTacs). These are connected to a National Instruments ELVIS DAQ 
device (National Instruments Corporation, Austin, TX, USA), which is controlled via Matlab (The MathWorks, 
Inc., Natick, MA, USA). An image of the two-fingered prototype indicating relevant subsystems can be seen in 
Figure 8. 
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Figure 8. Two-fingered prototype experimental setup: Actuation is provided externally, by a DC motor and 
spindle drive connected to the actuator tendon 

 

4.2 Test Protocol 

Control system 

The performance of the EMG classifier and the high-level state machine controller are evaluated by supplying 
pre-recorded EMG signals to achieve a sequence of grasping motions. These sequences are geared towards basic 
activities of daily living (Peerdeman et al., 2011). The EMG classifier’s accuracy and response time are 
significant parameters, and are tested by repeatedly classifying a random sequence of pre-recorded EMG signals. 
In earlier research on similar classification by Boere et al. (2010), the accuracy was found to exceed 90%. The 
high-level state machine is evaluated by inspection, and the execution time of the entire control system is 
measured as well.  

Joint locking 

The properties of the joint locking system are evaluated by locking different combinations of joints, and 
observing the resulting finger trajectories without obstructions. Repeated execution of these motions is used to 
investigate the effectiveness of the locks, as well as the consistency of the trajectories. Important considerations 
are the compliance of locked joints, which can be caused by play in the locking mechanism (Peerdeman et al., 
2012b), and the locks’ behavior at high joint torques. 

Grasping 

The pose of the prototype’s fingers and the forces exerted on them are evaluated during grasping. The joint locks 
and DC motor are controlled to accomplish different grasp types. Although the grasp types used here are a 
simplification of those used with an anthropomorphic hand prosthesis, the basic variations that are tested here 
can be combined to allow a single main actuator to perform cylinder, tripod, and lateral grasps with five fingers 
as well. 

An object is placed in between the fingers, and the joint angles and fingertip forces are measured using the Hall 
sensors and BioTacs, respectively. A specific object is chosen to illustrate the applications of each of the three 
grasp types: a mug for the cylinder grasp, a small box for the tripod grasp, and a USB flash drive for the lateral 
grasp. These objects are shown in Figure 6. 

5. Results 
This section summarizes the results of the experiments mentioned in Section 4, evaluating the control system, 
joint locking mechanism, and grasp performance of the prototype. 

5.1 Control System 

In these experiments, the accuracy and processing time of the EMG classifier are evaluated. A test set is created 
from a 90 s training recording divided into 50 ms windows, with the associated classes known in advance. This 
test set is used to train the classifier; afterwards, another window can be loaded, and the appropriate class is 
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determined.  

The performance of EMG classification is tested by entering a set of 25 random EMG windows into a trained 
linear discriminant analysis classifier 100 times. The results of one of these tests can be seen in Figure 9. The 
average accuracy of the classifier was found to be 92.53%, with the average classification time for a single set 
being 1.6 ms. This computation time is negligible compared to the window size required for classification. The 
only significant time delay in the high-level control state machine was found between moving the state machine 
to the Closing or Opening states and the start of motor activation, which takes approximately 96 ms. 

 

 

Figure 9. Control system experiment: A test of the linear discriminant analysis classifier with a set of 25 random 
electromyographic signal windows (Boere et al., 2010). Blue bars denote correct classifications; red bars denote 

errors 

 

5.2 Joint Locking 

To evaluate the functionality of the joint locks, the cylinder, tripod, and lateral grasps are performed without an 
object to grasp. The fingers are controlled to stop as soon as contact between the fingers is detected. The results 
of these tests can be seen in Figure 10. In the cylinder and lateral grasps, the joint angles of the freely moving 
fingers tend to stay equal. In the case of the tripod grasp, the joint locking ensures the proximal joint moves 
further than the locked distal joint. In both the lateral and the tripod grasp movement of the locked joints is still 
noticeable, though limited to 10 and 15 degrees, respectively. In general, even without object interaction, the 
functional differences between the three grasp types can be observed. Therefore, the joint locks can be 
considered an effective method of improving the range of motion of underactuated fingers.  

 

 

Figure 10. Joint locking experiment: The cylinder, tripod, and lateral grasps performed without grasping an 
object. The graphs indicate the fingers’ joint angles: the blue line represents the distal finger joint, and the red 

line represents the proximal finger joint. For the lateral grasp, the locked finger’s joint angles are also shown in 
the far right graph. The pictographs indicate the grasp type: green phalanges are in motion, and black phalanges 

are fixed 
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5.3 Grasping 

In these experiments, the grasping performance of the prototype is evaluated. The three grasp types are 
performed on various objects seen in Figure 6.  

5.3.1 Grasping Experiment 1 (Grasping the Mug Object) 

The results of this experiment can be seen in Figure 11. Because of the mug’s size, the joints do not move more 
than 15 degrees. In the cylinder grasp both joints move roughly equally in the unlocked situation, and a stable 
grasp is established within 1 s after contact. For the tripod grasp the distal joints are locked, though some joint 
motion can still be observed. This is due to the joint compliance mentioned in Section 2.2. However, in this case 
the locking of the distal joints has little effect on the performance of this grasp. The left finger is locked entirely 
for the lateral grasp. The unlocked finger pushes the mug towards the base of the locked finger, and the resulting 
grasp is unfit for picking up the mug. 

 

 
Figure 11. Grasping experiment 1: The cylinder, tripod, and lateral grasps performed on the mug object, showing 
joint angles and fingertip forces. The lateral grasp’s locked finger is omitted, as its joint angles are the same as in 
Figure 10. In the joint angle graphs, the blue line represents the distal finger joint, and the red line represents the 
proximal finger joint. For the fingertip forces, the blue line represents the cylinder grasp, the red line represents 
the tripod grasp, and the green line represents the lateral grasp. The pictographs indicate the grasp type: green 

phalanges are in motion, and black phalanges are fixed 

 

5.3.2 Grasping Experiment 2 (Grasping the Box Object) 

The results of this experiment can be seen in Figure 12. During cylinder grasping both joints initially move 
together, as with grasping the mug, but as soon as contact is established the proximal joints are extended in favor 
of continued distal joint flexion. This is a consequence of the fingers’ underactuation and will destabilize the 
grasp, as only the tips of the fingers stay in contact with the object. With the tripod grasp, the locked joints 
prevent the proximal joints from being extended, which results in a stable grasp requiring less force. The 
proximal joint rotation is also higher than in the cylinder grasp, and does not reverse after contact. However, the 
residual compliance of the joint locks still allows the distal joints to flex up to approximately 20 degrees. During 
the lateral grasp the active finger shows similar behavior to the cylinder grasp, but the grasp requires less force 
because of increased fingertip contact with the object. The locked finger still has some compliance, but does not 
contribute to the grasp. 

 

 
Figure 12. Grasping experiment 2: The cylinder, tripod, and lateral grasps performed on the box object, showing 
joint angles and fingertip forces. The lateral grasp’s locked finger is omitted, as its joint angles are the same as in 
Figure 10. In the joint angle graphs, the blue line represents the distal finger joint, and the red line represents the 
proximal finger joint. For the fingertip forces, the blue line represents the cylinder grasp, the red line represents 
the tripod grasp, and the green line represents the lateral grasp. The pictographs indicate the grasp type: green 

phalanges are in motion, and black phalanges are fixed 
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The difference between the cylinder and tripod grasp types is shown in more detail in Figure 13. First, a cylinder 
grasp is performed on the box object. Because none of the joints are locked, the finger’s underactuation causes it 
to continue flexing after contacting the object, which leads to an unstable grasp. Afterwards, the distal joint of 
each finger is locked to achieve a tripod grasp; this results in a firm hold on the object. 

 

 

Figure 13. Video frames of the box object being grasped with a cylindrical grasp (top) and a tripod grasp 
(bottom). For each grasp, the image frames are spaced 1 second apart. The pictographs indicate the grasp type: 

green phalanges are in motion, and black phalanges are fixed 

 
5.3.3 Grasping Experiment 3 (Grasping the USB Drive Object) 

The results of this experiment can be seen in Figure 14. With the cylinder grasp, the smaller size of the object 
increases the problems experienced during grasping of the box, which results in repeatedly dropping the USB 
drive. The cylinder grasp is therefore unfit for this object. For the tripod and lateral grasps, the only difference is 
additional joint flexion due to the object’s smaller size; the grasp stability and fingertip forces are unaffected.  

 

 

Figure 14. Grasping experiment 3: The cylinder, tripod, and lateral grasps performed on the USB drive object, 
showing joint angles and fingertip forces. The lateral grasp’s locked finger is omitted, as its joint angles are the 
same as in Figure 10. In the joint angle graphs, the blue line represents the distal finger joint, and the red line 

represents the proximal finger joint. For the fingertip forces, the blue line represents the cylinder grasp, the red 
line represents the tripod grasp, and the green line represents the lateral grasp. The pictographs indicate the grasp 

type: green phalanges are in motion, and black phalanges are fixed 

 
6. Discussion 
In this section, the results are used to evaluate the general grasp performance of the prototype, as well as its 
individual subsystems. 
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6.1 Experiments 

6.1.1 Control System 

The EMG classifier showed an accuracy of over 90%, though it could still lead to occasional missed or 
misinterpreted commands. This can be addressed by evaluating several 50 ms signal windows for a single 
command, increasing the reliability of the classifier. The time required to evaluate a signal window was shown to 
be negligible relative to the length of the windows themselves. The high-level controller was functional in 
allowing the user to engage and release the chosen grasp, though qualitative evaluation of the system would 
require additional test subjects. The time delay between switching to the Closing or Opening state and actual 
motor activation can reduce the intuitiveness of the system and should be minimized. The low-level controller 
was able to reliably stabilize the applied grasping force based on the BioTac’s sensor data, irrespective of the 
orientation of the fingertips with regard to the object. 

6.1.2 Joint Locking 

The results show the effectiveness of the joint locks in establishing finger motions relevant to the different grasp 
types. Also, they prevent motion of the fingers after establishing contact due to their underactuation. The 
different objects used in grasp testing also illustrate the use of different grasp types for activities of daily living. 
The joint locks did show between 10 to 15 degrees of compliance before joint motion stopped, though this did 
not prevent any of the grasp types from being performed.  

6.1.3 Grasping 

Stable grasps were established for 7 out of 9 combinations of grasp types and objects. A notable exception to this 
is the cylinder grasping of the box object, because the fingers’ underactuation prevented the fingertips from 
establishing proper contact with the box. The forces exerted on the objects varied between 5 N for the mug, and 
2 N for the USB drive. In general, applying the proper grasp type to either of the objects demonstrated the 
effectiveness of offering a variety of grasps, as lower forces and stable grasping could be achieved. The average 
time required to complete a grasp was approximately 1.5 seconds, depending on the size of the object and grasp 
type used. 

7. Conclusions 
The combination of EMG classification, high-level grasp planning, and low-level finger control provides an 
accurate and simple way of controlling a prosthesis’ automated grasping motions. With a combination of cylinder, 
tripod, and lateral grasps, a variety of objects can be picked up and many activities of daily living can be 
performed. In the two-fingered prosthesis prototype, these grasp types are executed with a single main actuator, 
due to the inclusion of joint locking mechanisms. Implementation of these control systems and mechanisms 
would decrease the size and weight of a prosthesis by reducing the number of main actuators, while still allowing 
for multiple different flexion trajectories for each finger. 

7.1 Future Work 

In order to expand this prototype to a five-fingered, anthropomorphic hand prosthesis, the actuation system will 
require the most attention. Though the joint locks reduce the number of main actuators needed, a system is 
needed to distribute the actuator force across all fingers. The development of a thumb opposition system will 
also be necessary, which may require separate actuation from the main grasping system. A new main actuator 
should also be implemented, as its current size would be unfit for an anthropomorphic prosthesis. Alternatives to 
DC motors, such as pneumatic cylinders, should be investigated also. 

Patient interaction with the system should be investigated for a proper evaluation of the control system’s 
intuitiveness. This would also allow for real-time EMG data to be evaluated. The current implementation of the 
low-level controller would be unfit for coordinated grasp control with five fingers; an intrinsically passive 
controller could be adapted to improve this (Peerdeman et al., 2012b). The joint locking mechanism can still be 
improved. Specifically, the compliance in the locked joints should be addressed, by ensuring play in the joints 
and lock mechanisms is minimized. If the joint locks’ solenoid actuators can be reduced in size or replaced by a 
smaller system, this would free up space for larger friction pawls and also reduce the relative effect of play. The 
control systems and mechanisms demonstrated in this paper have the potential to provide a modern 
myoelectrically-controlled hand prosthesis with sufficient degrees of freedom to be considered dynamically 
anthropomorphic, without complicating its control for the user or weighing down the prosthesis with high 
numbers of actuators. 
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