Spectral bandwidth selection for long memory
- Grace Yap
- Wen Cheong Chin
Abstract
Long-memory parameter estimation using log-periodogram regression relies largely on the frequency bandwidth and the order of estimation. Literature shows that a data-dependent plug-in method for the bandwidth significantly increases the MSE’s. In a long memory time series with mild short range effect, a simple approach to determine the bandwidth size is suggested based on the spectral analysis. Monte Carlo simulation results and empirical applications show that the proposed bandwidth selection performs satisfactorily.
- Full Text: PDF
- DOI:10.5539/mas.v10n8p63
This work is licensed under a Creative Commons Attribution 4.0 License.
Journal Metrics
(The data was calculated based on Google Scholar Citations)
h5-index (July 2022): N/A
h5-median(July 2022): N/A
Index
- Aerospace Database
- American International Standards Institute (AISI)
- BASE (Bielefeld Academic Search Engine)
- CAB Abstracts
- CiteFactor
- CNKI Scholar
- Elektronische Zeitschriftenbibliothek (EZB)
- Excellence in Research for Australia (ERA)
- JournalGuide
- JournalSeek
- LOCKSS
- MIAR
- NewJour
- Norwegian Centre for Research Data (NSD)
- Open J-Gate
- Polska Bibliografia Naukowa
- ResearchGate
- SHERPA/RoMEO
- Standard Periodical Directory
- Ulrich's
- Universe Digital Library
- WorldCat
- ZbMATH
Contact
- Sunny LeeEditorial Assistant
- mas@ccsenet.org