Experimental Investigation on Disturbance Wave Velocity and Frequency in Air-Water Horizontal Annular Flow

Andriyanto Setyawan, Indarto Indarto, Deendarlianto Deendarlianto


The wave characteristics of horizontal air-water annular two-phase flow in 16 and 26-mm-diameter pipe were investigated experimentally using flush-mounted constant electric current method (CECM) sensors and visual observations. The air and water superficial velocities were varied from 12 to 40 m/s and 0.05 to 0.2 m/s, respectively. The flow morphology of annular flow such as the disturbance wave, ripple, wave coalescence, wave development, entrainment, and breakup could be observed. Using cross correlation and power spectral density functions of liquid holdup signals, the wave velocity and frequency were determined. The effect of superficial liquid velocity on the wave velocity and frequency was found to be less significant compared to that of superficial gas velocity. Simple correlations for wave velocity and frequency were also developed.

Full Text:


DOI: https://doi.org/10.5539/mas.v8n4p84

Copyright (c)

Modern Applied Science   ISSN 1913-1844 (Print)   ISSN 1913-1852 (Online)  Email: mas@ccsenet.org

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.