Simulation of a Four-Car Elevator Operation Using MATLAB

Saw Soon King, Omrane Bouketir

Abstract


The design and simulation of a four-cars-elevator controller in a nine storey building is described in this paper. The design and simulation were accomplished using MATLABTM   fuzzy logic toolbox. The logic of the controller of a multi-car elevator has to be designed in such a way that the average waiting time is minimized while keeping the energy consumption of the system optimum. This is a multi-criteria optimization problem in stochastic environment and is best approached through Artificial Intelligent techniques. The work here focuses mainly on extracting the rules to minimize factors (i.e. waiting time, travelled distance and riding time) in order to minimize the energy consumed by the system. In this paper a detailed algorithm is presented to achieve the multiple objectives of minimizing the waiting time and the distance travelled simultaneously. This was accomplished by distributing different weightage to different quantities and then minimizing a combined cost. A simulator has been built with interactive GUI in Matlab to evaluate the efficacy of the algorithm.


Full Text: PDF

Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

Modern Applied Science   ISSN 1913-1844 (Print)   ISSN 1913-1852 (Online)

Copyright © Canadian Center of Science and Education

To make sure that you can receive messages from us, please add the 'ccsenet.org' domain to your e-mail 'safe list'. If you do not receive e-mail in your 'inbox', check your 'bulk mail' or 'junk mail' folders.